
- •История и основные этапы развития энергетики рб.
- •2. Современное состояние и перспективы развития энергетики рб
- •3. Тепловые электростанции: классификация, тепловой баланс и технологическая схема.
- •4. Принципиальная тепловая схема кэс
- •5. Принципиальные тепловые схемы тэц
- •6. Газотурбинные и парогазотурбинные установки.
- •7. Атомные электростанции
- •8 Гэс и гидроаккумулирующие подстанции: технологические схемы, характеристика, условия применения, примеры.
- •9 Ветроэлектростанции: основные типы и особенности конструкций современных ветроагрегатов.
- •10 Когенераторные установки: тепловой баланс, технологическая схема, область применения
- •11 Тригенерационные установки: тепловой баланс, технологическая схема абсорбционной холодильной машины, область применения.
- •1 2 Дизельгенераторные и бензиновые электроагрегаты: область применения; обозначения, современные типы
- •13 Расчетные условия для выбора проводников и аппаратов по продолжительным режимам
- •14 Температурные режимы и выбор проводников в длительных режимах
- •15 Термическая стойкость (тс) проводников.
- •16 Динамическая стойкость(дс) проводников.
- •17 Основные типы и конструкции гибких шин и токопроводов в электроустановках; условия выбора
- •18 Комплектные токопроводы и шинные мосты в электроустановках: конструкции, обозначения условия выбора
- •19 Высоковольтные кабели: классификация, основные типы, сравнительный анализ, условия выбора
- •20. Высоковольтные изоляторы: основные типы, характеристики, современные конструкции и условия выбора изоляторов
- •21. Синхронные генераторы(cг): классификация, основные типы и параметры синхронных генераторов (тг и гг). Изменение удельного расхода металла при увеличении единичной мощности.
- •22.Конструктивные особенности турбогенераторов и гидрогенераторов.
- •24.Генераторы для мини-тэц
- •25 Асинхронизированные сг
- •26.Системы возбуждения генераторов: технические требования, классификация, параметры, обозначения.
- •27.Независимое электромашинное возбуждение генераторов.
- •30.Система высокочастотного возбуждения генераторов.
- •31. Назначение и основные принципы гашения поля генераторов
- •34. Режимы работы синхронных генераторов
- •35. Синхронные компенсаторы и статистические регулируемые ирм
- •36. Силовые трансформаторы – назначение, история создания, типы магнитных систем
- •37. Основные параметры силовых трансформаторов и их применение в расчетах
- •38. Основные типы, обозначения и конструктивные элементы силовых трансформаторов
- •39.Конструктивные особенности, расчетные параметры и характеристики трансформаторов с расщепленной обмоткой.
- •40.Конструктивные особенности, расчетные параметры и характеристики автотрансформаторов.
- •41.Схемы соединений трансформаторов и автотрансформаторов.
- •42.Регулирование напряжения на трансформаторах с помощью рпн и пбв
- •43.Регулирование напряжения трансформаторов с помощью последовательных регулировочных трансформаторов.
- •44.Температурные режимы трансформаторов. Номинальные температурные параметры элементов трансформатора в установившемся режиме.
- •45.Определение установившихся температур элементов трансформатора при коэффициентах загрузки отличных от номинальных.
- •46. Определение температуры наиболее нагретой точки обмотки трансформатора в переходных тепловых режимах трансформаторов.
- •47. Тепловое старение изоляции трансформаторов. Аварийные и систематические перегрузки.
- •49. Характеристика таблично-логического метода расчета надежности схем.
- •50. Пример расчета надежности схемы электроустановки таблично-логическим методом.
- •51.Способы заземления нейтрали в электроустановках.
- •При определении напряжений можно принять: .
- •53.Замыкания на землю в сетях с компенсированной нейтралью
- •55.Типы дугогасящих реакторов применяемых для компенсации емкостных токов.
- •56. Выбор мощности дугогасящих реакторов и трансформаторов для их подключения.
- •57.Назначение и особенности выполнения резистивного заземления нейтрали
- •История и основные этапы развития энергетики рб.
- •Современное состояние и перспективы развития энергетики рб.
9 Ветроэлектростанции: основные типы и особенности конструкций современных ветроагрегатов.
Ветродвигатель - устройство, преобразующее энергию ветра в энергию вращательного движения. Основным рабочим органом ветродвигателя является вращающийся агрегат – колесо, приводимое в движение ветром и жестко связанное с валом, вращение которого приводит в действие оборудование, выполняющее полезную работу ( чем больше диаметр колеса, тем больший воздушный поток оно захватывает и быстрее вращается). Вал устанавливается горизонтально или вертикально.
В мире широко распространены ветродвигатели двух типов:
ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-4);
ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (5)).
Встречаются еще барабанные и некоторые другие оригинальные конструкции. Типы крыльчатых ветродвигателей отличаются только количеством лопастей.
Крыльчатые ВЭС – представляют собой лопастные механизмы с горизонтальной осью вращения. Ветроагрегат вращается с максимальной скоростью, когда лопасти расположены перпендикулярно потоку воздуха. Поэтому в конструкции предусмотрены устройства автоматического поворота оси вращения: на малых ВЭС – крыло-стабилизатор, а на мощных станциях, работающих на сеть, – электронная система управления рысканием. Мощность ВЭС зависит от скорости ветра и размаха лопастей ветроколеса. Коэффициент использования энергии ветра у крыльчатых намного выше, чем у других ветряков, недаром они занимают более 90% рынка.
Основные элементы: ветроколесо (может иметь одну или много лопастей, которые устанавливаются под некоторым углом к плоскости вращения ветроколеса), головка (представляет собой сопротивления, на которой монтируют вал ветроколеса и верхний передаточный механизм. Форма определяется системой передаточного механизма), хвост (закрепляется за головкой, предназначен для установки ветроколеса на ветер) и башня (служит для поднятия ветроколеса на высоту).Карусельные, или роторные, ВЭС с вертикальной осью вращения, в отличие от крыльчатых, могут работать при любом направлении ветра, не изменяя своего положения. Когда ветровой поток усиливается, карусельные ВЭС быстро наращивают силу тяги, после чего скорость вращения ветроколеса стабилизируется. Ветродвигатели этой группы тихоходны, поэтому не создают большого шума. В них используются многополюсные электрогенераторы, работающие на малых оборотах, что позволяет применять простые электрические схемы без риска потерпеть аварию при случайном порыве ветра.
Конструкция лопастных ВЭУ роторной схемы обеспечивает максимальную скорость вращения при запуске и ее автоматическое саморегулирование в процессе работы. С увеличением нагрузки скорость вращения ветроколеса уменьшается, а вращающий момент возрастает.
В ортогональных установках используется один и тот же профиль крыла, что и в дозвуковом самолете. К ортогональной установке сначала нужно подвести энергию - раскрутить и привести к определенным аэродинамическим параметрам, а уже потом она сама перейдет из режима двигателя в режим генератора. Отбор мощности начинается при скорости ветра приблизительно 5 м/с, а номинальная мощность достигается при скорости 14...16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 тыс. квт. В реальной установке мощностью 2 тыс. квт диаметр кольца, по которому двигаются крылья, составит около 80 метров.