Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Поле в вакууме.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.06 Mб
Скачать

Для контура в виде окружности радиуса , центр которой находится на проводнике, циркуляция вектора , касательного к этой окружности, будет равна

.

Особенно просто выглядит уравнение (или теорема) о циркуляции, если вместо вектора магнитной индукции использовать сонаправленный с ним вектор напряженности магнитного поля . Как известно

.

Покажем, как с помощью уравнения о циркуляции можно рассчитать величину магнитного поля внутри бесконечно протяженного соленоида, по которому течет ток величиной . Прежде заметим, что соленоид это навитый на цилиндрическую поверхность проводник, по которому течет ток. Соленоид характеризуют числом витков и длиной . Очевидно, что соленоид представляет собой параллельных друг другу витков с током.

Прежде подсчитаем индукцию магнитного поля в центре кругового тока и в точках на перпендикуляре к плоскости витка, проходящего через его центр.

В центре витка индукция и напряженность магнитного поля будут равны

.

И ндукция и напряженность магнитного поля на перпендикуляре к центру витка определятся соотношениями

.

И спользуя полученные результаты, рассчитаем индукцию и напряженность магнитного поле в центре бесконечно протяженного соленоида, в витках которого течет ток . Индукция от выделенной части соленоида

.

Как следует из чертежа

, .

Принимая во внимание приведенные соотношения, далее получим

.

Интегрируя по всем виткам, для индукции магнитного поля внутри соленоида окончательно получим

.

В случае бесконечно протяженного соленоида ,

. Поэтому индукция и напряженность магнитного поля внутри бесконечно протяженного соленоида будут равны

, . (1)

В приведенных формулах величина определяется числом витков на единице длины соленоида.

Формулы (1) можно получить, используя уравнение Максвелла (IV) о циркуляции вектора магнитной индукции. Для этого выберем замкнутую кривую, которая проходит внутри соленоида, выходит из него под прямым углом, проходит вне соленоида и аналогичным образом под прямым углом к оси соленоида возвращается в соленоид у другого конца.

Ц иркуляция вектора по выбранному контуру будет равна

, (2)

где длина соленоида. Циркуляция на внешнем участке выбранного контура равна нулю, так как вдали от соленоида индукция магнитного поля равна нулю, а вблизи концов соленоида проекция вектора на направление касательной к контуру равна нулю. С другой стороны циркуляция по выбранному замкнутому контуру равна току, охватываемому контуром. Все это учтено формулой (2). Разрешая соотношение (2), для индукции и напряженности магнитного поля получим

.