
- •Вопрос 1. Математика и психология
- •Вопрос 2. Генеральная и выборочная совокупность.
- •Вопрос 3. Измерения и шкалы измерения
- •Вопрос 4. Таблицы и графики. Основные статистические таблицы.
- •Вопрос 5. Первичные описательные статистики.
- •Выборочное среднее
- •Дисперсия
- •Вопрос 6. Нормальный закон распределения и его измерение.
- •Вопрос 7. Статистические гипотезы и критерии.
- •Направленные гипотезы
- •Вопрос 8. Статистическое решение и вероятность ошибки.
- •Вопрос 9. Параметрические и непараметрические методы. Мощность критериев.
- •Параметрические критерии
- •Непараметрические критерии
- •Вопрос 10. Классификация задач и методов их решения.
- •Вопрос 11. Параметрический критерий различий и сдвигов t-критерий стьюдента.
- •Вопрос 12. Непараметрические методы. Поиск критерия адекватного задаче исследования.
- •Вопрос 13. Выявление различий в уровне исследуемого признака.
- •2 Выборки 3 выборки и более
- •Вопрос 14. Оценка достоверности сдвига в значениях исследуемого признака.
- •Вопрос 15. Выявление различий в распределении признака.
- •Вопрос 16. Многофункциональные статистические критерии.
- •Вопрос 17. Корреляционный анализ.
- •Вопрос 18. Регрессионный анализ.
- •Вопрос 19. Дисперсионный анализ.
- •Вопрос 20. Назначение и классификация многомерных методов.
- •Вопрос 21. Факторный анализ.
- •Вопрос 22. Дискриминантный анализ.
- •Вопрос 23. Многомерное шкалирование.
- •Меры различий.
- •Непосредственная оценка различий.
- •Вопрос 24. Кластерный анализ (ка).
- •Последовательность ка.
- •Методы ка.
- •Вопрос 25. Моделирование психических процессов.
- •Вопрос 26. Теории искуственного интеллекта, проблемы и преспективы.
Вопрос 6. Нормальный закон распределения и его измерение.
Закон: если индивидуальная изменчивость некоторого свойства есть следствие множества причин, то распределение частот для всего многообразия проявлений этого свойства в генеральной совокупности соответствует кривой нормального распредения.
Нормальное распределение характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине - достаточно часто.
Нормальное распределение — распределение вероятностей, которое в одномерном случае задается функцией плотности распределения:
где параметр μ — математическое ожидание, медиана и мода распределения, а параметр σ - стандартное отклонение(σ² — дисперсия) распределения.
Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в многомерном нормальном распределении.
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Свойства нормального распределения:
- Единицей измерения единичного нормального распределения является стандартное отклонение
- Кривая приближается к оси Z, по краям асимптоматически – никогда не касаясь ее.
- Кривая симметрична относительно М=0. Ее асимметрия и эксцесс равны нулю.
- Кривая имеет характерный изгиб: точка перегиба лежит точно на расстоянии в одну сигму (нормальное распределение) от М.
- Площадь между кривой и осью Z равна 1.
Применение стандартного распределения:
Разработка тестовых шкал
Проверка нормальности выборочного распределения для принятия решения о том, в какой шкале измерен признак – в метрической или порядковой
Статическая проверка гипотез, в частности – при определении риска принятия неверного решения.
Вопрос 7. Статистические гипотезы и критерии.
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде. Статистические гипотезы подразделяются на нулевые и альтернативные, направленные и ненаправленные.
Нулевая гипотеза - это гипотеза об отсутствии различий.
Она обозначается как Hо называется нулевой потому, что содержит число 0: X1—Х2=0, где X1, X2 - сопоставляемые значения признаков.
Нулевая гипотеза - это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.
Альтернативная гипотеза - это гипотеза о значимости различий.
Она обозначается как Н1. Альтернативная гипотеза - это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.
Бывают задачи, когда мы хотим доказать как раз незначимость различий, то есть подтвердить нулевую гипотезу. Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.
Направленные гипотезы
H0: X1 не превышает Х2
H1: X1 превышает Х2
Ненаправленные гипотезы H0; X1 не отличается от Х2 H1: X1 отличается от Х2
Схема - классификация статистических гипотез.
Проверка гипотез осуществляется с помощью критериев статистической оценки различий.
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью.
Статистические критерии обозначают также метод расчета определенного числа и само это число.
Критерии делятся на параметрические и непараметрические.
Параметрические критерии
Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (/-критерий Стьюдента, критерий F и др.)
Непараметрические критерия
Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)
И те, и другие критерии имеют свои преимущества и недостатки. На основании нескольких руководств можно составить таблицу, позволяющую оценить возможности и ограничения тех и других (Рунион Р., 1982; McCall R., 1970; J.Greene, M.D'Olivera, 1989).
H0:
H1:
Критические значения выписываются из специальных таблиц.≤