
- •Вопрос 1. Математика и психология
- •Вопрос 2. Генеральная и выборочная совокупность.
- •Вопрос 3. Измерения и шкалы измерения
- •Вопрос 4. Таблицы и графики. Основные статистические таблицы.
- •Вопрос 5. Первичные описательные статистики.
- •Выборочное среднее
- •Дисперсия
- •Вопрос 6. Нормальный закон распределения и его измерение.
- •Вопрос 7. Статистические гипотезы и критерии.
- •Направленные гипотезы
- •Вопрос 8. Статистическое решение и вероятность ошибки.
- •Вопрос 9. Параметрические и непараметрические методы. Мощность критериев.
- •Параметрические критерии
- •Непараметрические критерии
- •Вопрос 10. Классификация задач и методов их решения.
- •Вопрос 11. Параметрический критерий различий и сдвигов t-критерий стьюдента.
- •Вопрос 12. Непараметрические методы. Поиск критерия адекватного задаче исследования.
- •Вопрос 13. Выявление различий в уровне исследуемого признака.
- •2 Выборки 3 выборки и более
- •Вопрос 14. Оценка достоверности сдвига в значениях исследуемого признака.
- •Вопрос 15. Выявление различий в распределении признака.
- •Вопрос 16. Многофункциональные статистические критерии.
- •Вопрос 17. Корреляционный анализ.
- •Вопрос 18. Регрессионный анализ.
- •Вопрос 19. Дисперсионный анализ.
- •Вопрос 20. Назначение и классификация многомерных методов.
- •Вопрос 21. Факторный анализ.
- •Вопрос 22. Дискриминантный анализ.
- •Вопрос 23. Многомерное шкалирование.
- •Меры различий.
- •Непосредственная оценка различий.
- •Вопрос 24. Кластерный анализ (ка).
- •Последовательность ка.
- •Методы ка.
- •Вопрос 25. Моделирование психических процессов.
- •Вопрос 26. Теории искуственного интеллекта, проблемы и преспективы.
Вопрос 19. Дисперсионный анализ.
Дисперсионный анализ – анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов (ANOVA).
Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:
- Вариативность, обусловленную действием каждой из исследуемых независимых переменных.
- Вариативность, обусловленную взаимодействием исследуемых независмых переменных.
- Вариативность случайную, обусловленную всеми неучтенными обстоятельствами.
-Вариативность, обусловленная действием исследуемых переменных и их взаимодействием соотносится со случайной вариативностью. Показателем этого соотношения является F – критерий Фишера (метод, не имеющий ничего общего, кроме автора, с «угловым преобразованием Фишера»).
FэмпА = Вариативность, обусловленная действием переменной А / Случайная вариативность
FэмпБ = Вариативность, обусловленная действием переменной Б / Случайная вариативность
FэмпАБ = Вариативность, обусловленная взаимодействием А и Б / Случайная вариативность
Дисперсионный анализ следует применять, если известно, что распределение признака является нормальным.
Формулировка гипотез в дисперсионном анализе.
Нулевая гипотеза:
«Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».
Альтернативная гипотеза:
«Средние величины результативного признака в разных условиях действия фактора различны».
Виды дисперсионного анализа.
Дисперсионный анализ схематически можно подразделить на несколько категорий. Это деление осуществляется, смотря по тому, сколько, во-первых, факторов принимает участие в рассмотрении, во-вторых, - сколько переменных подвержены действию факторов, и, в-третьих, - по тому, как соотносятся друг с другом выборки значений.
При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:
- Анализ несвязанных (то есть – различных) выборок. Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)
- Анализ связанных выборок. То есть: двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)
В случае, если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.
Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе.