
- •Введение
- •1. Технологическая часть
- •1.1. Назначение и условия работы детали
- •1.2. Химический состав, физико-механические характеристики
- •1.3 Составление кинематической схемы перемещения инструмента для каждого перехода
- •1.4. Формирование группы деталей и конструирование комплексной детали
- •1.5 Определение кода комплексной детали по классификатору ескд
- •1.6 Расчет годовой приведенной программы запуска деталей
- •1.7. Оценка технологичности детали
- •1.8. Определение припуска расчетно-аналитическим методом и расчет операционных размеров
- •1.9. Определение припуска нормативным методом и расчет операционных размеров
- •1.10 Расчет режимов резания
- •1.10.1 Определение режимов резания для токарной обработки для диаметральных размеров
- •1.10.2 Определение режимов резания для токарной обработки (торцевые поверхности)
- •1.10.3 Определение режимов резания для токарной обработки для торцевых поверхностей
- •1.10.4 Определение режимов резания для сверлильной обработки
- •1.10.5 Определение режимов резания для фрезерования
- •1.11 Определение норм времени при работе на станках с чпу
- •1.11.1 Определение норм времени для токарной обработки на станках с чпу
- •1.11.2 Определение норм времени для фрезерной обработки на станках с чпу
- •1.12 Выбор режущего инструмента для каждого перехода
- •1.12.1 Выбор режущего инструмента для токарной обработки
- •1.12.2Выбор режущего инструмента для сверлильной обработки
- •1.12.3 Выбор режущего инструмента для фрезерной обработки
- •2. Конструкторская часть
- •2.1. Определение количества оборудования основного производства
- •2.2. Расчёт системы инструментального обеспечения
- •2.3. Расчёт массы стружки
- •2.4. Подбор оборудования
- •2.4.1. Токарный станок модели ирт180пмф4
- •2.4.2. Горизонтальный многоцелевой сверлильно-фрезерно-расточной станок модели ир320пмф4
- •2.4.3. Станок круглошлифовальный 3м153у
- •2.4.4. Зубофрезерный станок 5в371
- •2.5. Устройство автоматической смены инструмента
- •2.6. Модульное оборудование системы. Удаления отходов производства. Технологические проблемы удаления стружки
- •2.7. Тактовый стол
- •2.8. Назначение и принцип работы ртк ионно-плазменного нанесения покрытий
- •2.9. Промышленный робот м20п
- •1. Определение количества и состава оборудования основного производства.
- •Типы машиностроительных производств характеризуются следующими значениями коэффициента закрепления операций:
- •2. Расчет и проектирование межоперационного склада заготовок и деталей
- •3. Расчет числа позиций загрузки и разгрузки
- •4. Расчет числа позиций контроля
- •5. Определение состава оборудования для транспортирования деталей
- •6. Определение состава оборудования для транспортирования инструмента
- •7. Определение состава оборудования для транспортирования стружки
- •Расчет годовой суммарной трудоемкости для цеха
- •Расчет грузопотоков
- •Расчет и проектирование межоперационного склада заготовок и деталей
- •Расчет состава оборудования для транспортирования деталей между операциями
- •6. Транспортная система инструментального обеспечения
- •7. Проектирование системы технического обслуживания механосборочного производства
- •8. Система контроля качества изделий
- •9. Определение площадей складов и вспомогательных отделений
- •10. Определение численности итр
- •11. Расчёт общих потребностей цеха
- •12. Выбор типа и конструкции здания цеха
- •Заключение
- •3.Система управления
- •3.Система управления движения по одной координате
- •3.1.Онисание элементов схемы
- •3.1.1Микросхема к555ие7
- •3.1.2Микросхема к555тм2
- •3.1.3. Микросхемы к561тл1
- •3.1.4. Микросхемы к111зпв1
- •4.Охрана труда
- •3.1 Анализ вредных факторов на производстве
- •Параметры микроклимата в производственном помещении.
- •Опасность поражения электрическим током.
- •Предотвращение и методы борьбы с опасными и вредными производственными факторами
- •Предотвращение вибраций.
- •Методы борьбы с проблемами подъёмно-транспортного оборудования.
- •Необходимые параметры микроклимата обеспечиваются выполнением ряда мероприятий, а именно:
- •Предотвращение поражения электрическим током
- •Пожарная безопасность
- •Определение требуемого воздухообмена в помещении по вредным веществам.
- •4. Экономика
- •4.1 Расчет себестоимости и цены вала-шестерни.
- •4.2 Полная себестоимость изготовления вала-шестерни
- •Перечень источников
- •Приложение
Типы машиностроительных производств характеризуются следующими значениями коэффициента закрепления операций:
КЗО 1 – массовое производство;
1 КЗО 10 – крупносерийное производство;
10 < КЗО 20 – среднесерийное производство;
20 < КЗО 40 – мелкосерийное производство;
КЗО > 40 – единичное производство;
Таким
образом,
=
21, мы имеем мелкосерийное производство
и экономически целесообразно является
проектирование гибкого автоматизированного
участка.
2. Расчет и проектирование межоперационного склада заготовок и деталей
В условиях серийного производства целесообразно использовать для каждой типа деталей отдельный спутник с приспособлением. Детали каждого наименования устанавливаются на спутник с конкретным устройством базирования и закрепления, т.е. каждому наименованию деталей соответствует «свой» спутник. Это позволяет сократить капитальные затраты, связанные с изготовлением дополнительных комплектов оснастки, и уменьшить размер стеллажа для хранения спутников.
Спутник располагается в отдельной ячейке стеллажа. Таким образом, число наименований деталей определяет число ячеек в стеллаже. Минимальное число ячеек стеллажа соответствует числу наименований деталей при условии, что для обработки одного наименования деталей используется один и тот же спутник.
Так как автоматизированные комплексы позволяют обрабатывать широкую номенклатуру деталей, которая может меняться в процессе эксплуатации, то целесообразно иметь запас ячеек в стеллаже (например, 10 %) на случай увеличения числа обрабатываемых деталей, т.е. число ячеек стеллажа принимается:
КСТЕЛ 1,2 Кнаим. = 1,2 ∙ 50 = 62. (2.1)
Определяем габаритные размеры стеллажа.
Необходимо определить размеры, занимаемые партией деталей каждого наименования вместе с ложементом.
Далее необходимо определить размеры спутника из стандартного ряда. Известные число ячеек стеллажа и размеры спутника позволяют определить параметры клеточных стеллажей.
Комплекс (рис. 2.2) включает десять станков (СТ1– СТ10), nСТ = 10 шт., стеллаж-накопитель спутников с ячейками позиции загрузки, разгрузки, контроля, внешний и внутренний штабелеры. Средняя трудоемкость обработки одной детали tОБ = 2,0 ч; средняя месячная программа выпуска деталей одного наименования NНАИМ = 50 шт.; месячный фонд работы одного станка в две смены Ф0 = 305 ч. ; среднее месячное количество наименований деталей (номенклатура), KНАИМ = 28 шт.
Рисунок
2.1 - План комплекса
Так как размеры спутника 500×500×130 мм, m = 50кг то выбираем ячейки для свободного расположения спутника: (АСТ=670 мм, ВСТ=670 мм, Ня=600мм, Нст=1210мм).
Из конструктивных соображений количество ячеек, расположенных по длине стеллажа Y=15шт. Соответственно количество ячеек, расположенных в высоту стеллажа:
2
шт.
Длина стеллажа определяется по формуле:
мм.
Высота стеллажа определяется как:
(2.2)
где Z – количество ячеек, расположенных в высоту стеллажа; СЯ – высота ячейки; hH – расстояние от пола до первого ряда ячеек.
Масса детали: mдет =50кг
Масса спутника: mспут =300кг
Нагрузка на одну ячейку будет: мнагр = 50 + 300 = 350кг
Площадь
одной ячейки S=670 ∙ 670 = 44890
0,4489
тогда удельная масса будет:
1,5 т/м2
(2.3)