
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Принцип действия рефрактометра Аббе.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе. Уравнение Ломакина-Шейбе.
- •42. Метод добавок в количественном атомно-эмиссионном анализе.
- •43. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •44. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
- •45. Физические основы рентгеноспектрального анализа.
- •46. Тормозное и характеристическое рентгеновское излучение.
- •47. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •48. Система обозначения характеристических рентгеновских спектральных линий. Серии рентгеновских спектральных линий.
- •49. Методы возбуждения рентгеновских спектров. Принцип действия рентгеновской трубки.
- •50. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •51 Основы кач-го и кол-го рентгеноспектрального анализа
- •53. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
- •54. Схема проведения рентгено-абсорбционного анализа.
- •55. Физические основы молекулярной спектроскопии поглощения уф- и видимого диапазона.
- •56. Хромофорные и ауксохромные группы. Гипсохромный и батохромный сдвиги. Гипо- и гиперхромный эффекты
- •57. Вид и основные характеристики молекулярных спектров поглощения уф- и видимого диапазона.
- •59. Основные положения количественного фотометрического анализа.
- •60. Типы отклонений закона светопоглощения от линейности и их причины
- •61.Метод Фирордта
- •62. Метод Аллена
- •63. Аналитическое применение фотометрии.
- •64.Физические основы ик-спектроскопии. Типы колебаний в молекулах. Зависимость положения спектральной полосы поглощения от типа колебаний, вида атомов и др. Особенностей строения молекул.
- •65.Скелетные колебания и колебания характеристических групп.
- •66.Типичный вид ик - спектра сложного органического вещества. Основные характеристики ик - спектров.
- •67. Подготовка образцов в ик - спектроскопии.
- •68. Особенности конструкции ик - спектрометров.
- •69 Порядок идентификации веществ по их ик- спектрам.
- •70.Использование ик-спектроскопии для определения молекулярной структуры неизвестного вещества.
- •71. Использование ик - спектроскопии для количественного анализа и анализа смесей веществ.
- •72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
- •73. Флуоресценция и фосфоресценция.
- •74. Схема возбуждения и эмиссии люминесцентного излучения.
- •75. Взаимовязь спектров поглощения и люминесценции. Правило Стокса,закон Стокса-Ломмеля.
- •76. Квантовый и энергетический выходы люминесценции. Закон Вавилова.
- •77. Вид спектров люминесценции и их основные характеристики.
- •78.Зависимость интенсивности люм. От с,т,рН,примесей.
- •79.Гашение флуоресценции.
- •80 Прямой флуоресцентный анализ.
- •81. Косвенный флуоресцентный анализ
- •82. Аппаратура и практическое применение люминесцентного анализа.
- •83. Схема и принцип действия фотометра люминесцентного анализа.
8. Физ. Основы поляриметрического метода.
Поляриметрия может быть использована только при работе с т.н. оптически активными веществами, т.е. веществами, способными вращать плоскость поляризации проходящего через них света.
Представления об оптически активных веществах основаны на электромагнитной теории света и теории взаимодействия электромагнитного излучения с веществом. Согласно электромагнитной теории, световые волны являются поперечными волнами, т.е. их колебания проходят в плоскости, перпендикулярной к направлению луча и при этом векторы напряженности электрического поля Е и магнитной индукции Н перпендикулярны друг другу (рис.1)
Puс. 1 Плоскополяризованная световая волна
Если проекция осциллирующего вектора электрического поля на плоскость, перпендикулярную направлению распространения луч представляет собой одну линию, такой луч называют плоскополяризованным (линейнополяризованным). Если такие проекции ориентированы по всем направлениям, луч называется естественным или неполяризованным.
IIлоскость,в которой происходит колебание вектора напряженности, называется плоскостью колебаний линейно поляризованной волны. Плоскость колебаний вектора магнитной индукции перпендикулярна плоскости колебаний называется плоскостью поляризации. Практически плоско поляризованный луч получают пропуская через пластинки, вырезанные из оптически активных минералов. Наиболее часто для этой цели используют призмы Николя, изготовленные из исландского шпата,а также плоские кварцевые пластинки. Используют также поляроиды, представляющие собой комплексные соединения иода. Если сложить два плоскополяризованных луча, находящихся в одной фазе и отличающихся только амплитудами, суммарный луч будет также линейно (плоско) поляризованным.
Сложение двух плоскополяризованных лучей, плоскости поляризации которых взаимоперпендикулярны, а разность фаз составляет 900, то получаются лучи в форме правой или левой спирали, т.е. круговая поляризация света. Если смотреть навстречу направлению распространения луча, то в левой спирали вектор электрического поля вращается по кругу по часовой стрелке, а в правой спирали - по кругу против часовой стрелки. Такой поляризацией по кругу свет получают пропуская плоскополяризованный луч через четверть волновую плостинку оптически активного вещества, толщина которого кратна четверти длины волны света, проходящего через него.
9. Типы оптической активности.
Все вещества и растворы в зависимости от их поведения при прохождении через них поляризованного света делятся на две категории. Вещества, способные изменять положение плоскости поляризации света, называются оптически активными. Вещества, не способные изменять положение плоскости поляризации света, называются оптически неактивными.
При прохождении поляризованного света через оптически активную среду могут возникнуть два эффекта:
1) изменение направления колебаний - вращение плоскости поляризации;
2) разложение плоскополяризованного луча на два компонента, обладающие вращением в разные стороны.
Оптическая активность вещества может определяться как оптическая активность его молекул (молекулярная оптическая активность), так и структурой вещества (структурная или кристаллическая оптическая активность). Молекулярная оптическая активность проявляете во всех агрегатных состояниях и в растворах. Основным условием появления молекулярной оптической активности является отсутствие центра симметрии, плоскости симметрии или зеркальной поворотной оси симметрии. Например, молекула циклогексана имеет молекулярную структуру и является оптически неактивным веществом. Молекула метилциклогекена несимметрична и оптически активна. Винная кислота существует в 4 четырех диастереоизомеров, два из которых ( d- и l- винная кислота) оптически активны, а 2 мезоформы имеют плоскость симметрии и способностью вращать плоскость поляризации света не обладают.
Структурной оптической активностью, т.е. способностью вращать плоскость поляризации в твердом состоянии, могут обладать кристаллы, построенные как из хиральных, так и из нехиралъных молекул. Причиной появления оптической активности нехиральных молекул, может быть деформация тех или иных элементов структуры внутренним полем кристалла, благодаря чему эти структурные элементы становятся хиральными. Для этого достаточно деформация 10-3. Примеры веществ, проявляющих структурную активность: кварц, мочевина, хлорат натрия.
Кристаллическая оптическая активность при плавлении или растворении вещества исчезает. Кроме такой оптической активности, при воздействии на вещество магнитного поля или при его контакте с хиральными молекулами может проявляться наведенная оптическая активность (эффект Фарадея и эффект Пфейфера). Согласно Пфейферу вращение плоскости поляризации обусловлено, тем, что две волны с круговой поляризацией (правой и левой), в виде которой может быть представлен плоскополяризационный луч, с различной силой взаимодействуют со средой, через которую они проходят. Это взаимодействие выражается в полеризации молекул и приводит к тому, что две волны с различной круговой поляризацией распространяются в веществе с разными скоростями, и на выходе из него плоскость поляризации плоскополяризованной волны, образованной сложением двух, поляризованных, по кругу волн, оказывается повернутой на угол .
В зависимости от того, какое взаимодействие в данной среде оказывается сильнее, поворот плоскости поляризации может происходить по часовой стрелке или против нее (если смотреть навстречу ходу луча света). Вращение по часовой стрелке называется правым и его величину считают положительной. Вращение против часовой стрелки - левым и отрицательным. Вращение плоскости поляризации зависит от структуры вещества, длины пути 1 светового луча в нем и не зависит от его интенсивности.