
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •4. Принцип действия рефрактометра Аббе.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе. Уравнение Ломакина-Шейбе.
- •42. Метод добавок в количественном атомно-эмиссионном анализе.
- •43. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •44. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
- •45. Физические основы рентгеноспектрального анализа.
- •46. Тормозное и характеристическое рентгеновское излучение.
- •47. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
- •48. Система обозначения характеристических рентгеновских спектральных линий. Серии рентгеновских спектральных линий.
- •49. Методы возбуждения рентгеновских спектров. Принцип действия рентгеновской трубки.
- •50. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
- •51 Основы кач-го и кол-го рентгеноспектрального анализа
- •53. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
- •54. Схема проведения рентгено-абсорбционного анализа.
- •55. Физические основы молекулярной спектроскопии поглощения уф- и видимого диапазона.
- •56. Хромофорные и ауксохромные группы. Гипсохромный и батохромный сдвиги. Гипо- и гиперхромный эффекты
- •57. Вид и основные характеристики молекулярных спектров поглощения уф- и видимого диапазона.
- •59. Основные положения количественного фотометрического анализа.
- •60. Типы отклонений закона светопоглощения от линейности и их причины
- •61.Метод Фирордта
- •62. Метод Аллена
- •63. Аналитическое применение фотометрии.
- •64.Физические основы ик-спектроскопии. Типы колебаний в молекулах. Зависимость положения спектральной полосы поглощения от типа колебаний, вида атомов и др. Особенностей строения молекул.
- •65.Скелетные колебания и колебания характеристических групп.
- •66.Типичный вид ик - спектра сложного органического вещества. Основные характеристики ик - спектров.
- •67. Подготовка образцов в ик - спектроскопии.
- •68. Особенности конструкции ик - спектрометров.
- •69 Порядок идентификации веществ по их ик- спектрам.
- •70.Использование ик-спектроскопии для определения молекулярной структуры неизвестного вещества.
- •71. Использование ик - спектроскопии для количественного анализа и анализа смесей веществ.
- •72.Физические основы люминесцентного метода. Виды люминесценции и способы ее возбуждения.
- •73. Флуоресценция и фосфоресценция.
- •74. Схема возбуждения и эмиссии люминесцентного излучения.
- •75. Взаимовязь спектров поглощения и люминесценции. Правило Стокса,закон Стокса-Ломмеля.
- •76. Квантовый и энергетический выходы люминесценции. Закон Вавилова.
- •77. Вид спектров люминесценции и их основные характеристики.
- •78.Зависимость интенсивности люм. От с,т,рН,примесей.
- •79.Гашение флуоресценции.
- •80 Прямой флуоресцентный анализ.
- •81. Косвенный флуоресцентный анализ
- •82. Аппаратура и практическое применение люминесцентного анализа.
- •83. Схема и принцип действия фотометра люминесцентного анализа.
37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
Фотографические методы количественного анализа. При использовании фотографических методов количественного анализа анализируемые спектры должны быть зарегистрированы на фотопластинке. При использовании фотографических детекторов - фотопластинок, фотопленок - интенсивность спектральных линий оценивается по т. н. почернению фотоэмульсии - логарифму отношения интенсивности света, прошедшего через незатемненный (незасвеченный) участок фотопластинки Iо, к интенсивности света, прошедшего через засвеченный ее участок I (рис.): S=lg I0/I
Почернение фотоэмульсии связано с выделением при попадании на нее излучения, проявлении и закреплении изображения мелкодисперсного металлического серебра. Однако между количеством излучения и количеством выделившегося серебра линейная зависимость наблюдается не всегда. IIоэтому для каждой фотоэмульсии строят характеристическую кривую в координатах «почернение S -экспозиция Н = Е t, где Е -освещенность, t -время освещения». lg Н =lg I
Характеристическая кривая фотоэмульсии имеет типичный вид, показанный на рис.
Построив характеристическую кривую фотоэмульсии по измеренным значениям почернений, сначала находят разность логарифмов экспозиций, вьгзвавших это почернение, а затем интенсивность измеряемых линий.
Так как почернение S является функцией интенсивности спектральной линии I, используя уравнение Ломакина-Шейбе можно записать S=γ b lgC + γ lga.
аb- область недодержек; bc- линейный участок (участок нормальных почернений); cd- область передержек; tgα=γ –коэффициент контрастности фотоэмульсии, зависящей от ее типа, а также от состава проявителя и времени проявления.
В основе большинства современных методом количественного анализа лежит измерение относительной интенсивности спектральных линий определяемого элемента и элемента сравнения, находящегося в той же пробе. Это обусловлено тем, что интенсивность спектральной линии зависит от ряда неконтролируемых процессов - измерения условий испарения пробы и колебания в работе регистрирующего устройства и др.
Обозначим через Iпр интенсивность линии определяемого элемента, через Iосн. интенсивность линии сравнения. Если концентрация элемента сравнения (элемент основы пробы или специально введенный элемент) может рассматриваться как постоянная величина, то относительная интенсивность, согласно уравнению Ломакина-Шейбе, будет определяться выражением
Iпр/Iосн. = аС1b /Iосн.
или в логарифмической форме 1g(Iпр./ Iосн.) = b 1g С1 + Ig а/,
где 1g а/ =1g (а / Iосн.)
При фотографической регистрации спектров почернения (оптические плотности) линий определяемого элемента и элемента сравнения равны
S1 =γ1 1g Iпp.; S2 = γ2 1g Iосн.
Для близко расположенных линий можно считать свойства фотоэмульсии практически одинаковыми, т.о. γ1 = γ2. Тогда разность почернений будет равна
S = S1 — S2 = γ lg (Iпр./Iосн.)
S/γ = 1g (Iпр/ Iосн.)
Получаем S = S1 — S2 = γ1g C1 + γ lg а'.
Измерение почернений аналитических пар линий проводят с помощью специального прибора — микрофотометра. По результатам измерений почернений аналитических пар линий эталонов строят градуировочный график.
Выбор координат при построении градуировочного графика определяется соображениями удобства или специфическими требованиями анализа. Градуировочные графики строят в координатах «разность оптических плотностей (почернений) S — логарифм концентрации 1g С» или «логарифм относительной интенсивности 1g Iпр. / Iосн. — логарифм концентрации 1g С».