
- •1.Основные требования, предъявляемые к химическому оборудованию при проектировании.
- •2.Технология аммиака
- •3.Способы получения хлорида калия.
- •4 Сырьевые материалы в технологии кальцинированной соды (карбонат натрия)
- •5 Расчет авд на устойчивость
- •1. Основные требования к выбору конструкционных материалов. Виды конструкционных материалов.
- •2. Основные стадии в производстве неконцентрированной азотной кислоты и их характеристика.
- •1 Получение no
- •2 Окисление no до no2
- •3 Абсорбция no2 растворами hno3
- •4 Очистка хвостовых газов от оксидов азота
- •3 Суммарная и электродные реакции при электролизе воды
- •4 Основные сырьевые материалы в производстве минеральных удобрений
- •5 Виды уплотнений в авд
- •1 Технология конверсии со
- •2 Цикл низкого давления с турбодетандером
- •3 Способы защиты от коррозии.
- •4 Пневмотранспорт
- •5 Особенности конструкции корпусов аппаратов высокого давления. Свыше 10 мПа или 1 атм. Маленький диаметр и большая длина (20-25 м), для того чтобы сохранить объём аппарата.
- •1 Виды коррозии. Водородная коррозия и способы защиты от водородной коррозии.
- •2 Классическая схема производства контактной серной кислоты. Существует два метода
- •3 Принцип поляризации электродов при электрохмических реакциях
- •4 Транспортные средства для перемещения сыпучих материалов.
- •5 Сырье для производства азотной кислоты.
- •1 Классификация сырьевых источников в технологии неорганических материалов
- •2. Основные стадии производства аммиачной селитры (нитрат аммония) и их краткая характеристика.
- •3. Установка пневмотранспорта. Схемы установок. Назначение.
- •4. Особенности расчёта авд
- •5. Механизм электродных процессов
- •1 Классификация минеральных удобрений:
- •2 Технологическая схема производства концентрированной азотной кислоты методом прямого синтеза
- •4 Основные технологические стадии в производстве кальцинированной соды аммиачным способом
- •5 Элеваторы.
- •1 Самопроизвольные и принудительные окислительно-восстановительные реакции, их использование
- •2. Технологическая схема производства аммофоса.
- •3 Особенности механического расчета авд
- •4 Виды конструкционных материалов. Стали
- •5 Сырье для производства серной кислоты
- •1 Методы очистки технологических газов. Классификация и краткая характеристика.
- •2 Технологическая схема производства камерного суперфосфата
- •3 Элеваторы.
- •4 Компрессоры. Типы. Степень сжатия.
- •5 Суммарная и электродные реакции при получении хлора и щелочи
- •1. Технологическая схема получения карбамида (полный жидкостный рецикл)
- •2.Принципиальная схема установки для производства разбавленной серной кислоты
- •3. Виды конструкционных материалов. Чугун
- •4. Поршневые насосы. Компрессоры
- •5. Тонкая очистка технологческого газа от оксидов углерода (метанирование)
- •1 Суммарная и электродные реакции при производстве цинка
- •2. Типовая технологическая схема получения нитроаммофоски
- •3 Конструкции аппаратов колонного типа.
- •4 Законы фарадея
- •5 Колонные аппараты тарельчатого типа. Гидродинамические режимы работы контактного устройства.
- •1.Основные требования, предъявляемые к химическому оборудованию при проектировании.
- •1. К технологическим относятся:
- •2.Конструктивние:
- •2.Физико-химические основы процесса конверсии аммиака
- •3 Особенности конструкции аппаратов высокого давления. Свыше 10 мПа или 1 атм. Маленький диаметр и большая длинна( 20-25 м) ,поэтому увеличивается объём аппарата.
- •4. Технологическая схема производства метанола
- •5 Метод получения глубокого холода, основанный на Джоуль-Томсоновском эффекте понижения температуры.
- •1 Физико-химические основы производства двойного суперфосфата камерным и бескамерным способом.
- •2. Основные технологические стадии в производстве серной кислоты
- •3. Машины для транспортировки жидкостей т газов
- •4 Виды коррозии.
- •5.Основные виды содопродуктов
4 Виды конструкционных материалов. Стали
Конструкционные материалы, используемые в химическом машиностроении, делятся на 4 класса:
- стали
- чугуны
- цветные металлы и сплавы
- неметаллические материалы
Сталь представляет собой сплав железа с углеродом, содержание которого не превышает 1-2%, кроме того, в состав стали входят примеси кремния, магния, серы, фосфора.
По химическому составу делятся на несколько групп:
- углеродистая, обыкновенного качества
- углеродистые конструкционные
- легированные конструкционные и т.д.
Сталь углеродистая обыкновенная делится на несколько категорий (1,2,3,4,5,6). Чем больше номер категории, тем выше механическая прочность стали и ниже её пластичность.
По степени раскисления стали изготавливают:
- кипящие
- полуспокойные
- спокойные
Свойства углеродистой стали обыкновенного качества значительно повышается после термической обработки (спец.нагрев и закалка). Термическая обработка низкоуглеродистых сталей улучшает механические свойства стали и приносит значительный экономический эффект.
Спокойные стали - содержат минимальное количество оксида железа, что обеспечивает спокойное застывание стали в изложнице.
Кипящие стали - полностью не раскислены, поэтому при застывании из металла выделяются пузырьки СО, образующиеся за счет реакции оксида железа с углеродом стали. Эти стали обладают худшими механическими и технологическими показателями, но они наиболее дешевы.
Полуспокойные находятся в промежутке между ними.
Для улучшения физико-химических характеристик стали и придания им особых свойств (жаростойкость, кислотостойкость, жаропочность) в их состав вводят определенные легирующие добавки.
5 Сырье для производства серной кислоты
Сырьем могут быть либо элементарная сера, либо серосодержащие соединения, из которых можно получить либо серу, либо диоксид серы (сульфиды железа, сульфиды цветных металлов, сероводород)
Основные источники сырья: сера и серный колчедан (железный). Основной – это сера, также обходящиеся газы цветной металлургии, содержащие диоксид серы SO2.
Исходными реагентами для получения серной кислоты могут быть элементная сера и серосодержащие соединения, из которых можно получить либо серу, либо диоксид серы. Такими соединениями являются сульфиды железа, сульфиды цветных металлов (меди, цинка и др.), сероводород и ряд других сернистых соединений.
Традиционно основные источники сырья — сера и железный (серный) колчедан. Постепенно доля колчедана как сырьевого источника уменьшается, что связано и с большими транспортными расходами на его транспортировку (кроме серы в нем весьма велика доля других компонентов), и с невозможностью избавиться от отхода — огарка. Значительное место в сырьевом балансе производства серной кислоты занимают отходящие газы цветной металлургии, содержащие диоксид серы.
Билет 8
1 Методы очистки технологических газов. Классификация и краткая характеристика.
Промышленная очистка газов от взвешенных в них твердых или жидких частиц проводится для уменьшения загрязненности воздуха, улавливания из газа ценных продуктов или удаления из него вредных примесей, отрицательно влияющих на последующую обработку газа, а также разрушающих аппаратуру.
Очистка отходящих промышленных газов является одной из важных технологических задач большинства химических производств. Поэтому разделение газовых неоднородных систем относится к числу широко распространенных основных процессов химической технологии.
В промышленных условиях пыль может образовываться в результате механического измельчения твердых тел (при дроблении, истирании, размалывании, транспортировке и т. д.), при горении топлива (зольный остаток), при конденсации паров, а также при химическом взаимодействии газов, сопровождающемся образованием твердого продукта. Получаемая в таких процессах пыль состоит из твердых частиц размерами 3—70 мкм (ориентировочно). Взвеси, образующиеся в результате конденсации паров (нефтяные дымы, туманы смол, серной кислоты и др.), чаще всего состоят из очень мелких частиц размерами от 0,001 до 1 мша
Различают следующие способы очистки газов:
осаждение под действием сил тяжести (гравитационная очистка);
осаждение под действием инерционных, в частности центробежных сил;
фильтрование;
мокрая очистка;
осаждение под действием электростатических сил (электрическая очистка).
1)отстаивание
твёрдых частиц в газ-ой среде по принципу
осаждения под действием сил тяжести в
кап-ой жидкости
где
-кол-во
взвешенных частиц в исходном(загрязнённом)
и очищенном газе кг/ч.
2)Действие пылеуловливателей такого типа основано на использовании инерц-х сил возникающих при резком изменении газового потока, которое сопровождается уменьшением скорости.
3)При очистки фильтрованием, газы, содержащие взвешенные твёрдые частицы проходят пористые перегородки, пропускающие газ и задерживающие на своей поверхности твёрдые частицы.
4)Для тонкой очистки газов от пыли применяют мокрую очистку-промывку газов водой или другой жидкостью. Осуществляется в мокрых пылеуловителях, либо на поверхности жидкой плёнки, стекающей по вертикальной или наклонной плоскости( плёночные или насадочные скрубберы), либо на поверхности капель(полые скрубберы, скрубберы Вентури)или пузырьков газа( барботажные пылеуловители).
Для очистки сильно запылённых газов (# технологических), используют барботажные пылеуловители. В этих аппаратах жидкость взаимодействует с газом, приводится в состояние подвижной пены, что обеспечивает большую поверхность контакта между жидкостью и газом и соответственно высокую степень очистки газа от пыли.
Степень улавливания пыли в барботажных аппаратах превышает 95-99% при низких эксплутационных расходах.
5)Электрическая очистка основана на ионизации молекул газа электрическим разрядом.