
- •1. Значение автоматического управления для развития химической промышленности на современном этапе
- •2. Краткий очерк истории развития систем автоматического управления
- •3. Особенности управления химико-технологическим процессом
- •4. Технико-экономический эффект управления. Роль управления в обеспечении безопасности химического производства и охраны окружающей среды
- •1. Понятие асутп.
- •2. Структура и функции асутп.
- •Классы микропроцессорных комплексов
- •1. Основные термины и определения
- •1. Иерархия управления. Назначение систем управления химическим предприятием и химико-технологическим процессом
- •2. Принципы управления
- •2.1. Управление по задающему воздействию
- •2.3. Управление по возмущающему воздействию
- •2.4. Управление по отклонению
- •2.5. Комбинированное управление
- •3. Классификация систем управления
- •3.1. По характеру изменения задающего воздействия
- •3.2. По числу контуров
- •3.3. По числу управляемых величин
- •3.4. По характеру управляющих воздействий
- •3.5. По виду зависимости установившейся ошибки от внешнего воздействия
- •3.6. По энергетическим признакам
- •3.7. По математическому описанию
- •4. Функциональная структура сар
- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
- •1. Объекты управления и их основные свойства
- •1.1. Классификация объектов управления
- •1.1.1. Одномерные и многомерные объекты
- •1.1.2. Односвязные и многосвязные объекты
- •1.1.3. Линейные и нелинейные объекты
- •1.1.4. Объекты с сосредоточенными и распределенными параметрами
- •1.2. Свойства объектов управления
- •1.2.1. Емкость
- •1.2.2. Самовыравнивание
- •1.2.3. Запаздывание Транспортное запаздывание
- •2. Задачи синтеза регуляторов
- •3. Основные законы регулирования
- •3.1. Пропорциональный закон регулирования
- •3.2. Интегральный закон регулирования
- •3.3. Пропорционально-интегральный закон регулирования
- •3.4. Пропорционально-дифференциальный закон регулирования
- •3.5. Пропорционально-интегрально-дифференциальный закон регулирования
- •3.6. Позиционные регуляторы
- •3.6.1. Двухпозиционные регуляторы
- •3.6.2. Трехпозиционные регуляторы
- •1.1. Регулирование основных технологических параметров
- •1.1.1. Регулирование расхода
- •1.1.2. Регулирование устройств для перемещения жидкостей и газов
- •1.1.3. Регулирование уровня
- •1.2. Регулирование типовых тепловых процессов
- •3. Технические средства систем автоматического управления
- •3.1. Основные разновидности управляющих устройств, применяемых в системах управления хтп
- •3.2. Автоматические регуляторы прямого и непрямого действия
- •3.2.1. Регуляторы прямого действия
- •3.2.2. Регуляторы непрямого действия
- •3.4. Исполнительные устройства
- •3.4.3. Пьезокерамические исполнительные устройства
1.1.3. Линейные и нелинейные объекты
Линейный объект — объект управления, в математической модели функционирования которого все зависимости между величинами могут быть представлены линейными функциями.
В
общем случае необходимым
условием линейности
объекта управления
(как и любой другой системы) является
соответствующая взаимосвязь
между входным воздействием
и
реакцией объекта
на это воздействие
.
Если к объекту, находящемуся в состоянии
покоя, приложить возмущающее воздействие
,
то на выходе появится
реакция
.
Если при тех же условиях подвергнуть
объект воздействию
,
то он даст соответствующую реакцию
.
Необходимым
условием линейности является то, чтобы
при возмущающем
воздействии
объект
давал реакцию
.
Это положение обычно называют принципом
суперпозиции.
Кроме
того, линейный объект должен обладать
свойством гомогенности
(однородности). Необходимо,
чтобы при изменении входной
переменной в к
раз
(
=
const)
реакция (выходная переменная) объекта
изменилась в то же число раз, т. е.
оказалась равна
Нелинейный объект — объект/управления, в математической модели функционирования которого хотя бы одна зависимость между величинами является нелинейной функцией.
1.1.4. Объекты с сосредоточенными и распределенными параметрами
Выходные величины объектов с сосредоточенными параметрами не зависят от пространственной координаты и имеют в данный момент времени одно и то же числовое значение в каждой точке внутри объекта. Примерами таких объектов являются: химический реактор идеального смешения, резервуар со свободным истечением жидкости, газгольдер и т. д.
Объекты управления с сосредоточенными параметрами, свойства которых не изменяются во времени, называются стационарными и описываются обыкновенными дифференциальными уравнениями с постоянными коэффициентами. Дифференциальные уравнения дополняются начальными условиями.
Выходные величины объектов с распределенными параметрами в данный момент времени имеют разные числовые значения в различных точках объекта. Основные переменные процесса в объекте с распределенными параметрами изменяются и во времени, и в пространстве. Математическая модель объекта управления с распределенными параметрами содержит хотя бы одно дифференциальное уравнение с частными производными. Примерами объектов с распределенными параметрами являются трубчатые реакторы, массо-обменные колонные аппараты (ректификационные, дистилляционные, абсорбционные, экстракционные), кожухотрубные теплообменники, теплообменники «труба в трубе» и т. д.
1.2. Свойства объектов управления
1.2.1. Емкость
Работа любого управляемого объекта связана с притоком (приходом), стоком (расходом) и преобразованием материальных и энергетических потоков, поэтому емкость является свойством, характерным для всех объектов управления в химической технологии.
Под емкостью объекта (аккумулирующей способностью) обычно понимают его способность накапливать или сохранять вещество или энергию.
Объекты управления по числу емкостей подразделяются на од-ноемкостные и многоемкостные. Одноемкостный объект управления состоит из одного сопротивления стоку (расходу) вещества или энергии и одной емкости. К одноемкостный объектам относятся резервуары и аппараты, в которых регулируется уровень жидкости; аппараты, в которых регулируется давление газа или пара; теплообменники смесительного типа с непосредственным контактом теплоносителя и нагреваемого (или охлаждаемого) вещества; участки трубопроводов, на которых регулируется давление или расход, и др.
Многоемкостные объекты состоят из двух или более емкостей, последовательно соединенных и разделенных сопротивлениями. Большинство промышленных объектов управления (ректификационные и абсорбционные колонны, теплообменники, сложные гидравлические системы и др.) являются многоемкостными объектами.
На рис. 4.5 приведены примеры одноемкостных и многоемкостных объектов.
Из сказанного следует, что чем больше емкость объекта, тем меньше скорость изменения выходной величины при одном и том же изменении потока подаваемого в объект вещества или энергии. Это означает, что емкость характеризует инерционность объекта.