
- •1. Значение автоматического управления для развития химической промышленности на современном этапе
- •2. Краткий очерк истории развития систем автоматического управления
- •3. Особенности управления химико-технологическим процессом
- •4. Технико-экономический эффект управления. Роль управления в обеспечении безопасности химического производства и охраны окружающей среды
- •1. Понятие асутп.
- •2. Структура и функции асутп.
- •Классы микропроцессорных комплексов
- •1. Основные термины и определения
- •1. Иерархия управления. Назначение систем управления химическим предприятием и химико-технологическим процессом
- •2. Принципы управления
- •2.1. Управление по задающему воздействию
- •2.3. Управление по возмущающему воздействию
- •2.4. Управление по отклонению
- •2.5. Комбинированное управление
- •3. Классификация систем управления
- •3.1. По характеру изменения задающего воздействия
- •3.2. По числу контуров
- •3.3. По числу управляемых величин
- •3.4. По характеру управляющих воздействий
- •3.5. По виду зависимости установившейся ошибки от внешнего воздействия
- •3.6. По энергетическим признакам
- •3.7. По математическому описанию
- •4. Функциональная структура сар
- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
- •1. Объекты управления и их основные свойства
- •1.1. Классификация объектов управления
- •1.1.1. Одномерные и многомерные объекты
- •1.1.2. Односвязные и многосвязные объекты
- •1.1.3. Линейные и нелинейные объекты
- •1.1.4. Объекты с сосредоточенными и распределенными параметрами
- •1.2. Свойства объектов управления
- •1.2.1. Емкость
- •1.2.2. Самовыравнивание
- •1.2.3. Запаздывание Транспортное запаздывание
- •2. Задачи синтеза регуляторов
- •3. Основные законы регулирования
- •3.1. Пропорциональный закон регулирования
- •3.2. Интегральный закон регулирования
- •3.3. Пропорционально-интегральный закон регулирования
- •3.4. Пропорционально-дифференциальный закон регулирования
- •3.5. Пропорционально-интегрально-дифференциальный закон регулирования
- •3.6. Позиционные регуляторы
- •3.6.1. Двухпозиционные регуляторы
- •3.6.2. Трехпозиционные регуляторы
- •1.1. Регулирование основных технологических параметров
- •1.1.1. Регулирование расхода
- •1.1.2. Регулирование устройств для перемещения жидкостей и газов
- •1.1.3. Регулирование уровня
- •1.2. Регулирование типовых тепловых процессов
- •3. Технические средства систем автоматического управления
- •3.1. Основные разновидности управляющих устройств, применяемых в системах управления хтп
- •3.2. Автоматические регуляторы прямого и непрямого действия
- •3.2.1. Регуляторы прямого действия
- •3.2.2. Регуляторы непрямого действия
- •3.4. Исполнительные устройства
- •3.4.3. Пьезокерамические исполнительные устройства
10.2. Измерение концентрации растворов
Автоматический непрерывный контроль жидкостей осуществляется измерительными устройствами, монтируемыми непосредственно в технологическом аппарате или в трубопроводе, при соблюдении следующих условий: измерительное устройство должно иметь термокомпенсацию или контролируемая среда должна находиться в изотермических условиях и не менять своего физического состояния; первичный измерительный преобразователь, погруженный в измеряемую среду, не должен создавать в ней застойные зоны. В противном случае датчик анализатора следует установить вне технологического аппарата, применяя специальные пробоотборные устройства.
Широко применяются традиционные автоматические анализаторы состава технологических жидкостей, использующие кондуктометрический, потенциометрический, денсиметрический и ультразвуковой методы.
Примечание
Разработка автоматических систем отбора и подготовки проб с микропроцессорным управлением получения и обработки информации позволила значительно развить вискозиметрический, ультразвуковой, титрометри-ческий и другие методы.
10.2.1. Кондуктометрические анализаторы
Принцип действия кондуктометрического анализатора основан на зависимости удельной электрической проводимости раствора от количества и природы содержащихся в растворе веществ. Широкое распространение получили контактные кондуктометрические анализаторы. Их чувствительный элемент представляет собой электродную ячейку, погруженную в измеряемый раствор, с помощью которой измеряется его электрическая проводимость, зависящая от состава и количества находящихся в нем веществ.
Двухэлектродные
ячейки применяют для анализа чистых
разбавленных растворов с удельной
электрической проводимостью до Ю~5
См/м и в сигнализаторах, когда не требуется
достижения высокой точности измерения.
В трехэлектродной ячейке внешние
электроды соединены между собой и вместе
с внутренним электродом образуют две
параллельно включенные двухэлектродные
ячейки. В такой ячейке незначительны
внешние наводки. В четырехэлектродной
ячейке переменное напряжение подводится
к двум крайним электродам, между которыми
в растворе протекает ток. Два внутренних
электрода служат для измерения падения
напряжения, которое создает ток на
участке раствора между ними.
Четырехэлектродные ячейки применяют
для анализа чистых растворов с удельной
электрической проводимостью до
См/м.
Этот способ используют при измерения концентрации электролитов.
Электропроводность гомогенных многокомпонентных жидких смесей в первом приближении подчиняется правилу аддитивности:
где
—
удельная электропроводность жидкой
смеси, См/м;
—
молярная доля
компонента
;
—
удельная электропроводность
компонента
в жидкой смеси;
—
число компонентов-электролитов в
растворе.
Электропроводность дисперсных систем, составленных из электропроводной сплошной фазы и неэлектропроводной дисперсной фазы, зависит от концентрации неэлектропроводных диспергированных частиц.
Электропроводность неоднородной гетерогенной среды не подчиняется правилу аддитивности, и ее определяют экспериментально.
Проводя измерение электропроводности жидких растворов (изменяется только концентрация определяемого компонента), измерение электропроводности гетерогенных систем (суспензии, эмульсии и т. д.), у которых изменяется только содержание дисперсной фазы, возможно непрерывно контролировать изменение концентрации определяемого компонента.
Кондуктометрические датчики, как правило, устанавливают в технологических аппаратах и трубопроводах, при этом специальная подготовка пробы к измерениям не нужна.
10.2.2. Потенциометрические анализаторы
Потенциометрический метод основан на измерении электродных потенциалов, функционально связанных с концентрацией (активностью) определяемого вещества в растворе. Электроды представляют собой окислительно-восстановительные системы. Измеряемый потенциал отвечает равновесному состоянию, установившемуся на электроде между окисленной и восстановленной формой определяемого вещества, и в общем виде может быть определен по уравнению Нернста:
где Е
— электродный
потенциал, В;
—
стандартный электродный потенциал —
потенциал электрода, измеренный в
стандартных условиях (25 °С, 101,325 кПа,
),
В; п — число
электронов, обменивающихся между
окисленной и восстановленной формами
вещества;
—
универсальная газовая постоянная; Т
— абсолютная
температура, К;
—
постоянная Фарадея;
—
активность окисленной и восстановленной
форм вещества соответственно, моль/л.
Абсолютное значение
электродного потенциала (5.115) непосредственно
измерить нельзя, для его измерения
применяют гальванический элемент, в
котором один электрод является
индикаторным (измерительным), а другой
— электродом сравнения. Индикаторный
электрод помещают в контролируемую
жидкую среду. Потенциал индикаторного
электрода
определяется
концентрацией (активностью) ионов в
растворе. В качестве электрода сравнения
используют стандартные электроды
(например, металлический электрод,
помещенный в насыщенный водный раствор
соли), имеющие постоянный потенциал
.
Потенциал электрода сравнения зависит
от температуры, поэтому его располагают
в контролируемой среде в непосредственной
близости от индикаторного электрода
(или в специальном неметаллическом
сосуде с раствором электролита).
Электрический контакт электрода
сравнения с контролируемой средой в
последнем случае реализуется через
практически непроточный ключ.
ЭДС гальванической цепи, составленной из индикаторного электрода и электрода сравнения, помещенных в контролируемую жидкую среду, составит
Рис. 111. Ионоселективные электроды:
а — стеклянный мембранный электрод; металлические электроды с напыленным слоем металла (б), проволочный (в), точечный (г); д — электрод с твердой мембраной
Потенциометрический метод применяется для измерения концентраций кислот, оснований, солей в водных и неводных средах, а также для контроля рН водных растворов прямым потенциометрическим измерением. Возможности потенциометрического метода расширились с появлением ионоселективных электродов (рис. 111). В конструкцию такого электрода входит мембрана, проницаемая только для определяемого иона, тем самым обеспечивается избирательный анализ одних ионов в присутствии других. В стеклянном мембранном электроде (рис. 111, а) ионообменной мембраной служит шарик из стекла определенного сорта, припаянного к стеклянной трубке. Трубка заполнена стандартным (внутренним) раствором с постоянной активностью ионов водорода, и в нее опушен проводник — серебряная проволока. Разность потенциалов между стеклянной ионообменной мембраной и внутренним полуэлементом (система проводник—внутренний раствор) составляет потенциал стеклянного электрода. В состав стеклянной ионообменной мембраны входят атомы натрия, способные к активному электрохимическому обмену с контролируемой средой при рН > 10. При рН > 12, вследствие интенсивного электрохимического обмена, электрод «выщелачивается».
Металлические индикаторные электроды с напыленным слоем металла на нейтральную поверхность (рис. 111, б), проволочный (рис. 111, в) или припаянный одним концом к нейтральной поверхности в виде капли — точечный (рис. 111, г) в контролируемой среде вступают в электрохимическое взаимодействие с ионами, присутствующими в этой среде. Электродный потенциал, устанавливающийся на индикаторном электроде, обусловлен совокупностью процессов, протекающих при этом, в том числе коррозией металла в контролируемой среде. Поэтому наибольшей селективностью при потенциометрическом контроле многокомпонентных технологических сред обладают индикаторные электроды, изготовленные из благородных металлов (платина, золото, иридий и т. д.). На рис. 111, д представлен индикаторный ионоселективный электрод с разделительной твердой мембраной (кристалл, пленка, таблетка), выполняющий ту же функцию, что и стеклянный шарик в стеклянном мембранном электроде.
Замечание
В настоящее время большое внимание уделяется разработке химических сенсоров на основе ионоселективных полевых транзисторов.
Автоматический потенциометрический контроль технологических водных низкоконцентрированных растворов и суспензий используется для управления процессами нейтрализации и для автоматического поддержания заданного интервала значений рН и рХ (X — ион) в технологических средах.