- •1. Значение автоматического управления для развития химической промышленности на современном этапе
- •2. Краткий очерк истории развития систем автоматического управления
- •3. Особенности управления химико-технологическим процессом
- •4. Технико-экономический эффект управления. Роль управления в обеспечении безопасности химического производства и охраны окружающей среды
- •1. Понятие асутп.
- •2. Структура и функции асутп.
- •Классы микропроцессорных комплексов
- •1. Основные термины и определения
- •1. Иерархия управления. Назначение систем управления химическим предприятием и химико-технологическим процессом
- •2. Принципы управления
- •2.1. Управление по задающему воздействию
- •2.3. Управление по возмущающему воздействию
- •2.4. Управление по отклонению
- •2.5. Комбинированное управление
- •3. Классификация систем управления
- •3.1. По характеру изменения задающего воздействия
- •3.2. По числу контуров
- •3.3. По числу управляемых величин
- •3.4. По характеру управляющих воздействий
- •3.5. По виду зависимости установившейся ошибки от внешнего воздействия
- •3.6. По энергетическим признакам
- •3.7. По математическому описанию
- •4. Функциональная структура сар
- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
- •1. Объекты управления и их основные свойства
- •1.1. Классификация объектов управления
- •1.1.1. Одномерные и многомерные объекты
- •1.1.2. Односвязные и многосвязные объекты
- •1.1.3. Линейные и нелинейные объекты
- •1.1.4. Объекты с сосредоточенными и распределенными параметрами
- •1.2. Свойства объектов управления
- •1.2.1. Емкость
- •1.2.2. Самовыравнивание
- •1.2.3. Запаздывание Транспортное запаздывание
- •2. Задачи синтеза регуляторов
- •3. Основные законы регулирования
- •3.1. Пропорциональный закон регулирования
- •3.2. Интегральный закон регулирования
- •3.3. Пропорционально-интегральный закон регулирования
- •3.4. Пропорционально-дифференциальный закон регулирования
- •3.5. Пропорционально-интегрально-дифференциальный закон регулирования
- •3.6. Позиционные регуляторы
- •3.6.1. Двухпозиционные регуляторы
- •3.6.2. Трехпозиционные регуляторы
- •1.1. Регулирование основных технологических параметров
- •1.1.1. Регулирование расхода
- •1.1.2. Регулирование устройств для перемещения жидкостей и газов
- •1.1.3. Регулирование уровня
- •1.2. Регулирование типовых тепловых процессов
- •3. Технические средства систем автоматического управления
- •3.1. Основные разновидности управляющих устройств, применяемых в системах управления хтп
- •3.2. Автоматические регуляторы прямого и непрямого действия
- •3.2.1. Регуляторы прямого действия
- •3.2.2. Регуляторы непрямого действия
- •3.4. Исполнительные устройства
- •3.4.3. Пьезокерамические исполнительные устройства
8.4. Измерение расхода на основе тепловых явлений
Тепловыми расходомерами называют расходомеры, действие которых основано на измерении эффекта теплового воздействия на поток (или на тело, контактирующее с потоком), зависящего от расхода. Чаще применяются для измерения расхода газа и реже для измерения расхода жидкости. Тепловые расходомеры отличаются способом нагревания, расположением нагревателя (снаружи технологического трубопровода или внутри), а также характером функциональной связи между расходом и измеряемым сигналом. Основной способ нагревания — электрический омический. По характеру теплового взаимодействия тепловые расходомеры подразделяют на калориметрические, термоконвективные, термоанемометрические.
У калориметрических
и термоконвективных расходомеров
измеряется разность температур
газа
или жидкости (при постоянной
мощности
нагревания)
или же мощность
(при
).
У термоанемометров измеряется
сопротивление
нагреваемого
тела (при постоянной силе тока
)
или же сила тока
(при
).
Калориметрические и термоконвективные
расходомеры измеряют массовый расход
при условии неизменности теплоемкости
измеряемого вещества, что является их
достоинством. Другое достоинство
термоконвективных расходомеров —
отсутствие контакта с измеряемым
веществом. Недостаток тех и других —
инерционность.
8.4.1. Калориметрические расходомеры
Принцип работы
калориметрических расходомеров основан
на зависимости среднемассовой разности
температур потока от мощности нагревания.
Калориметрический расходомер (рис. 88,
а) состоит
из нагревателя 3,
расположенного
внутри трубопровода 4,
и двух
термопреобразователей 1
и 2 для
измерения температур
до
нагревателя и
после
нагревателя. Термопреобразователи
располагаются обычно на равных
расстояниях
от
нагревателя. Распределение температур
по обе стороны от источника нагревания
зависит от расхода вещества.
Так как теплоемкость у жидкостей намного больше, чем у газов, то калориметрические расходомеры находят применение лишь для измерения очень малых расходов жидкостей. Основное назначение этих приборов — измерение расхода газа. Из-за малой надежности работы в эксплуатационных условиях нагревателей и термопреобразователей, располагаемых внутри трубопровода, калориметрические расходомеры применяют как образцовые приборы для поверки и градуировки расходомеров других типов.
Рис. 88. Расходомеры:
а — калориметрический;
6 —
термоконвективный (1,2—
термопреобразователи;
3 — нагреватель;
4 — трубопровод);
—
термоконвективный с совмещенными
нагревателем и термопреобразователями
(/ — двухсекционный нагреватель; 2
— трубопровод;
3 —
измерительный прибор;
—
терморезисторы); г
— распределение
температур в стенке трубопровода в
отсутствие (/) и при наличии расхода (2)
среды
8.4.2. Термоконвективные расходомеры
Термоконвективными называются тепловые расходомеры, у которых и нагреватель, и термопреобразователь (термопара) располагаются снаружи трубопровода (рис. 88, б). Это существенно повышает эксплуатационную надежность расходомеров и делает их удобными для применения. Передача теплоты от нагревателя к измеряемому веществу осуществляется через стенку трубы за счет конвекции.
Термоконвективные расходомеры, у которых нагреватель совмещен с термопреобразователями, обладают меньшей инерционностью.
В схеме (рис. 88, в)
нагреватель
состоит из двух секций, являющихся
одновременно терморезисторами
и
,
включенными в мостовую схему с
терморезисторами
и
.
Они нагреваются током от стабилизированного
источника напряжения ИПС. При отсутствии
расхода среды распределение температур
в стенке трубопровода представляет
симметричная кривая / (рис. 88, г).
При этом
и
равны
и мост находится в равновесии. С появлением
расхода среды температура
и сопротивление
становятся
меньше температуры
и
сопротивления
,
а распределение температур соответствует
кривой 2. С
ростом
расхода среды возрастает разность
температур
—
,
увеличивается разность потенциалов в
точках
и
,
измеряемая прибором 3,
шкала которого
отградуирована в единицах расхода.
Примечание
В термоконвективных
микрорасходомерах обычно применяют
термометры сопротивления (медные,
никелевые). В остальных типах
термоконвективных расходомеров применяют
термобатареи (последовательно соединенные
медь-константановые или хромель-копелевые
термопары) с числом спаев 8...30. Спаи
термобатареи располагают в местах
измерения температур
и
,
и таким образом получаемая ТЭДС (1...10
мВ) соответствует разности температур
.
Спаи должны быть электрически изолированы
от стенки трубы и в то же время их
температура должна соответствовать
температурам стенки. Для изоляции служат
синтетические смолы и цемент. Сами же
спаи и термоэлектроды должны иметь
минимальные размеры.
