- •1. Значение автоматического управления для развития химической промышленности на современном этапе
- •2. Краткий очерк истории развития систем автоматического управления
- •3. Особенности управления химико-технологическим процессом
- •4. Технико-экономический эффект управления. Роль управления в обеспечении безопасности химического производства и охраны окружающей среды
- •1. Понятие асутп.
- •2. Структура и функции асутп.
- •Классы микропроцессорных комплексов
- •1. Основные термины и определения
- •1. Иерархия управления. Назначение систем управления химическим предприятием и химико-технологическим процессом
- •2. Принципы управления
- •2.1. Управление по задающему воздействию
- •2.3. Управление по возмущающему воздействию
- •2.4. Управление по отклонению
- •2.5. Комбинированное управление
- •3. Классификация систем управления
- •3.1. По характеру изменения задающего воздействия
- •3.2. По числу контуров
- •3.3. По числу управляемых величин
- •3.4. По характеру управляющих воздействий
- •3.5. По виду зависимости установившейся ошибки от внешнего воздействия
- •3.6. По энергетическим признакам
- •3.7. По математическому описанию
- •4. Функциональная структура сар
- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
- •1. Объекты управления и их основные свойства
- •1.1. Классификация объектов управления
- •1.1.1. Одномерные и многомерные объекты
- •1.1.2. Односвязные и многосвязные объекты
- •1.1.3. Линейные и нелинейные объекты
- •1.1.4. Объекты с сосредоточенными и распределенными параметрами
- •1.2. Свойства объектов управления
- •1.2.1. Емкость
- •1.2.2. Самовыравнивание
- •1.2.3. Запаздывание Транспортное запаздывание
- •2. Задачи синтеза регуляторов
- •3. Основные законы регулирования
- •3.1. Пропорциональный закон регулирования
- •3.2. Интегральный закон регулирования
- •3.3. Пропорционально-интегральный закон регулирования
- •3.4. Пропорционально-дифференциальный закон регулирования
- •3.5. Пропорционально-интегрально-дифференциальный закон регулирования
- •3.6. Позиционные регуляторы
- •3.6.1. Двухпозиционные регуляторы
- •3.6.2. Трехпозиционные регуляторы
- •1.1. Регулирование основных технологических параметров
- •1.1.1. Регулирование расхода
- •1.1.2. Регулирование устройств для перемещения жидкостей и газов
- •1.1.3. Регулирование уровня
- •1.2. Регулирование типовых тепловых процессов
- •3. Технические средства систем автоматического управления
- •3.1. Основные разновидности управляющих устройств, применяемых в системах управления хтп
- •3.2. Автоматические регуляторы прямого и непрямого действия
- •3.2.1. Регуляторы прямого действия
- •3.2.2. Регуляторы непрямого действия
- •3.4. Исполнительные устройства
- •3.4.3. Пьезокерамические исполнительные устройства
7.2.5. Пьезоэлектрические термопреобразователи
К этой группе можно отнести кварцевые датчики, измеряющие изменение резонансной частоты кварцевого кристалла, зависящей от изменения температуры. Кварцевый измерительный преобразователь работает в рабочем диапазоне от —80 °С до +250 °С, имеет линейную характеристику от -50 °С до +250 °С с точностью 0,04 °С и выдает сигналы, удобные для регистрирующих устройств или последующей цифровой обработки.
7.3. Измерение температуры бесконтактным методом
Бесконтактный способ измерения температуры основан на восприятии тепловой энергии, передаваемой лучеиспусканием и воспринимаемой на расстоянии от исследуемого объекта. Верхний предел измерения температуры таким способом теоретически неограничен. Часто традиционный контактный способ измерения температуры невозможно применить в силу ряда причин: недоступные для прямого контакта поверхности (промышленное оборудование, высокая температура в производстве кирпича, керамики, стекла и т. д., агрессивные вещества); материалы, плохо проводящие теплоту; небольшие размеры объектов (при измерении контактным методом энергия между датчиком и объектом измерения перераспределяется, в результате чего температура объекта может существенно измениться).
Известно, что любая поверхность, температура которой выше абсолютного нуля, испускает тепловую энергию в виде электромагнитного излучения. При поглощении электромагнитного излучения от излучающего тела другими телами электромагнитное излучение вновь превращается в тепловую энергию. Излучение нагретых тел называют тепловым. Температуру тела можно измерить на расстоянии по тепловому излучению, при этом температурное поле объекта измерения не искажается. Следовательно, бесконтактный метод измерений температуры основан на том, что чувствительный элемент средства измерений не приводится в контакт с объектом измерения.
Измерение температуры тел по их тепловому излучению называют пирометрией. Средства измерений температуры тел по тепловому излучению называют пирометрами излучения или просто пирометрами.
Бесконтактные методы измерения температуры теоретически не имеют верхнего температурного предела своего применения. Так, температура источника со сплошным спектром излучения, близкая к 6000 "С, измеряется теми же методами, что и температура, например, и в 1000 °С, и в 2000 "С.
7.3.2. Яркостные пирометры
Наиболее известными из них являются пирометры с «исчезающей» нитью накаливания (рис. 76), применяемые для измерения яркостной температуры в видимой области спектра. Принцип действия: сравнение яркости измеряемого излучения и контрольного излучателя, например, накаленной нити вольфрама.
Сравнить обе яркости можно, например, изменением яркости контрольного излучателя, изменяя мощность нагревания нити в широких пределах. Благоприятная для чувствительности глаза длина волны (0,65 мкм) в области видимой части спектра обеспечивается красным светофильтром. Если в результате уравнивания достигается равенство обеих яркостей, то верхняя часть нити накаливания исчезнет (перестанет быть видимой) на фоне изображения источника измеряемого излучения. Мощность нагревания нити накаливания на пути потока излучения является показателем яркостной температуры измеряемого объекта. Ее считывают по температурной шкале измерительного прибора.
Диапазон измерений
температуры для пирометров с «исчезающей»
нитью накаливания: 400...5000
(в
особых случаях до 10 000 °С). Погрешность
промышленных пирометров составляет ±1
% от верхнего предела диапазона измерений.
Рис. 76. Яркостями пирометр с «исчезающей» нитью накаливания:
/ — объектив; 2, 7— диафрагмы; 3, 6— фильтры; 4— пирометрическая лампа; 5 — окуляр; 8 — реостат; 9 — измерительный прибор
