
- •Перші складені задачі. Способи аналізу змісту. Способи пошуку плану розв’язання.
- •Складові процесу робити над здачею
- •Методика роботи над задачами на знаходження четвертого пропорційного
- •5. Безпосереднє ознайомлення із задачами на знаходження невідомого за двома різницями проводиться на основі розв'язування трьох задач, поданих нижче.
- •6. Розгляньмо задачі на рух.
- •7.Методика роботи над типовими задачами пов’язаними з пропорційними величинами. Приклади залежностей між різними групами величин.
- •9.Закони множення. Визначення добутку цілих невід’ємних чисел через суму.
- •10. Теоретикомножинний зміст частки цілого невід’ємного числа і натурального. Навести приклади задач на розкриття теоретикомножинного змісту частки цілого невід’ємного числа і натурального.
- •11. Визначення частки через добуток. Необхідна умова існування частки на множині цілих невід’ємних чисел, її єдність. Неможливість ділення на нуль.
- •12. Правило ділення числа на добуток. Приклади застосування даних правил для спрощення обчислень.
- •13. Правило ділення суми на число. Приклади застосування даних правил для спрощення обчислень.
- •14. Поняття ділення з остачею,його теоретико-множинний зміст.
- •15.Алгоритм множення і ділення в десятковій системі числення.
- •Властивості відношення подільності.
- •Теорема про подільність суми
- •Теорема про подільність різниці
- •17. Подільність добутку цілих невід’ємних чисел. Ознаки подільності на складені числа.
- •18. Нсд нск. Натуральних чисел,способи їх знаходження . Розклад натурального числа на прості множники і знаходження нск нсд чисел способом розкладу на прості множники.
- •19. Властивості нсд і нск. Алгоритм евкліда.
- •20. Методика ознайомлення з діленням, властивостями цих дій, зв’язком між компонентами і результатами та перевіркою правильності дій.
- •21. Методика ознайомлення з множенням, властивостями цих дій, зв’язком між компонентами і результатами та перевіркою правильності дій.
- •22. Методика ознайомлення з діленням з остачею.
- •23. Методика вивчення таблиць множення і відповідних випадків ділення.
- •25. Методика навчання розв’язування простих текстових задач розкриття змісту арифметичних дій множення і ділення.
- •27. Методика навчання розв’язування простих текстових задач на збільшення (зменшення) числа в кілька разів, кратне порівняння.
- •28. Усні прийоми множення і ділення в концентрі «Тисяча»
- •29. Ознайомлення з письмовим множенням і діленням у концентрі « Тисяча »
- •30. Методика формування навичок письмового множення і ділення у концентрі «Багатоцифрові числа »
5. Безпосереднє ознайомлення із задачами на знаходження невідомого за двома різницями проводиться на основі розв'язування трьох задач, поданих нижче.
Задача 1. Перший покупець купив 2 м тканини і заплатив 18 грн. Скільки гривень коштує 1 м тканини ?
Задача 2. Перший покупець купив 5 м тканини, а другий — 3 м такої самої тканини. Перший покупець заплатив на 18 грн. більше, ніж другий. Скільки гривень коштує їм тканини?
Задача 3. Перший покупець купив 5 м тканини, а другий — 3 м такої самої тканини. Перший покупець заплатив на 18 грн. більше, ніж другий. Скільки гривень заплатив другий покупець?
Ознайомлюючи учнів із задачею на знаходження величини за двома різницями, вчитель прочитав задачу такого змісту: "З першої ділянки зібрали 6 кошиків моркви, а з другої — 4 таких самих кошики. З першої ділянки зібрали на 40 кг моркви більше, ніж з другої. Скільки кілограмів моркви зібрали з кожної ділянки окремо?" — і запропонував учням розглянути малюнок.
— Чому з першої ділянки зібрали на 40 кг моркви більше, ніж з другої?
— Маса скількох кошиків моркви, зібраної з першої ділянки, така сама, як і маса моркви, зібраної з другої ділянки?
— Маса скількох кошиків моркви дорівнює 40 кг?
— Складіть план розв'язування задачі
6. Розгляньмо задачі на рух.
Розв'язуванню задач на зустрічний рух передує тривала робота з розв'язування простих та складених задач на знаходження швидкості, часу та відстані. Поняття швидкості вводять на основі життєвого досвіду дітей та безпосередніх практичних дій.
Для формування навичок доцільно усно розв'язувати задачі за таблицями. Наведемо зразки таблиць, 1.
Знайдіть швидкість.
Назва |
Швидкість |
Час ] |
Зідстань |
Велосипедист |
? |
2 год |
28 км |
Автомобіль |
9 * |
3 год |
210 км |
2. Знайдіть відстань. |
|||
Назва |
Швидкість |
Час |
Відстань |
Пішохід |
5 км/год |
4 год |
■> |
Електропоїзд |
120 км/год |
3 год |
9 |
3. Знайдіть час. |
|||
Назва |
Швидкість |
Час |
Відстань |
Лижник |
13 км/год |
•> |
26 км |
Поїзд |
60 км/год |
? |
240 км |
4. Знайдіть невідомі величини.
Назва |
Швидкість |
Час |
Відстань |
Велосипедист |
10 км/год |
3 год |
|
Автомобіль |
36 км/год |
? |
72 км |
Теплохід "Комета" |
? |
4 год |
280 км |
У ході підготовчої роботи ілюструють зміст таких виразів, як "виїхали одночасно", "рухаються назустріч один одному", "рухаються в протилежних напрямах" тощо. Практичні дії супроводяться зображенням відрізків (довжина шляху) і стрілками (напрям руху). З відповідними ілюстраціями потрібно розглянути кілька задач такого виду:
/. З двох міст об И год виїхали назустріч один одному два поїзди. Вони зустрілися о 15 год. Скільки годин перебував у дорозі до зустрічі кожний поїзд?
2. Два пішоходи рухаються назустріч один одному. Швидкість першого пішохода дорівнює 5 км/год, а другого — 4 км/год. На скільки кілометрів вони зближуються за 1 год? За 2 год? За 3 год?
3. Два катери рухаються по річці у протилежних напрямах. Швидкість першого катера дорівнює 24 км/год, а другого — 37км/год. На скільки кілометрів вони віддаляються один від одного за 1 год? За 2 год? За 3 год?
Кожна із задач на зустрічний рух і рух у протилежних напрямах (у разі віддалення рухомих тіл) має три види.
I вид — дано швидкість кожного з тіл і час руху, шукане — відстань.
II вид — дано час руху, відстань, яку подолали разом обидва тіла, і швидкість одного з тіл, шукане — швидкість іншого тіла.
III вид — дано швидкість кожного з тіл і відстань, шукане — час руху. Заслуговує на увагу досвід послідовного введення задач. Спочатку на двох-трьох уроках опрацьовують перший вид задач. На основі цього виду на наступних уроках вводять послідовно другий і третій види задач. Розгляньмо такий підхід на конкретних задачах.