
- •Перші складені задачі. Способи аналізу змісту. Способи пошуку плану розв’язання.
- •Складові процесу робити над здачею
- •Методика роботи над задачами на знаходження четвертого пропорційного
- •5. Безпосереднє ознайомлення із задачами на знаходження невідомого за двома різницями проводиться на основі розв'язування трьох задач, поданих нижче.
- •6. Розгляньмо задачі на рух.
- •7.Методика роботи над типовими задачами пов’язаними з пропорційними величинами. Приклади залежностей між різними групами величин.
- •9.Закони множення. Визначення добутку цілих невід’ємних чисел через суму.
- •10. Теоретикомножинний зміст частки цілого невід’ємного числа і натурального. Навести приклади задач на розкриття теоретикомножинного змісту частки цілого невід’ємного числа і натурального.
- •11. Визначення частки через добуток. Необхідна умова існування частки на множині цілих невід’ємних чисел, її єдність. Неможливість ділення на нуль.
- •12. Правило ділення числа на добуток. Приклади застосування даних правил для спрощення обчислень.
- •13. Правило ділення суми на число. Приклади застосування даних правил для спрощення обчислень.
- •14. Поняття ділення з остачею,його теоретико-множинний зміст.
- •15.Алгоритм множення і ділення в десятковій системі числення.
- •Властивості відношення подільності.
- •Теорема про подільність суми
- •Теорема про подільність різниці
- •17. Подільність добутку цілих невід’ємних чисел. Ознаки подільності на складені числа.
- •18. Нсд нск. Натуральних чисел,способи їх знаходження . Розклад натурального числа на прості множники і знаходження нск нсд чисел способом розкладу на прості множники.
- •19. Властивості нсд і нск. Алгоритм евкліда.
- •20. Методика ознайомлення з діленням, властивостями цих дій, зв’язком між компонентами і результатами та перевіркою правильності дій.
- •21. Методика ознайомлення з множенням, властивостями цих дій, зв’язком між компонентами і результатами та перевіркою правильності дій.
- •22. Методика ознайомлення з діленням з остачею.
- •23. Методика вивчення таблиць множення і відповідних випадків ділення.
- •25. Методика навчання розв’язування простих текстових задач розкриття змісту арифметичних дій множення і ділення.
- •27. Методика навчання розв’язування простих текстових задач на збільшення (зменшення) числа в кілька разів, кратне порівняння.
- •28. Усні прийоми множення і ділення в концентрі «Тисяча»
- •29. Ознайомлення з письмовим множенням і діленням у концентрі « Тисяча »
- •30. Методика формування навичок письмового множення і ділення у концентрі «Багатоцифрові числа »
28. Усні прийоми множення і ділення в концентрі «Тисяча»
До вивчення цієї теми учні мали справу лише з табличними випадками множення і ділення . Далі розпочинається розгляд позатабличних випадків множення і ділення. У межах концентру «Тисяча» до нього належать :
А) множення і ділення, пов’язані з числами 1 і 0, 10 і 100; Множення і ділення розрядних чисел на розрядне число; ділення виду 300 :20, 600:300,600:30;
Б) множення двоцифрового числа на одноцифрове й одноцифрового на двоцифрове; множення виду 120 × 3; ділення двоцифрового числа на одноцифрове та ділення виду 360 : 3;
В) ділення двоцифрових і трицифрових чисел на двоцифрове число при одноцифровій частці способом випробувань ( 96 : 24; 125 : 25);
Г) ділення з остачею ( табличні випадки ).
Як теоретичне забезпечення прийомів обчислення розглядають ділення числа на добуток, множення суми на число і числа на суму, ділення суми на число. Крім цього, учні ознайомлюються з перевіркою дій другого ступеня.
29. Ознайомлення з письмовим множенням і діленням у концентрі « Тисяча »
Опрацювання теми відбувається в такій послідовності: множення дво- і трицифрових чисел на одноцифрове число; ділення трицифрових чисел на одноцифрове число; множення двоцифрових чисел на двоцифрове число; ділення трицифрових чисел на двоцифрове число. Множення двоцифрових чисел на двоцифрове і ділення трицифрових чисел на двоцифрове, що вивчається на початку навчального року в 4 класі, має бути ґрунтовно опрацьованим і практикуватись протягом всього навчального року. Послідовність розгляду випадків множення визначається зростанням їх складності:
213 • 3 = 639 (множення без переходу через розряд); 37 • 6 = 222, 127 • 3 = 381 (множення з переходом через розряд); 151 • 6 = 906 (у добутку нуль); 125 • 4 = 500 (у добутку два нулі).
Потім учні вчаться застосовувати набуті вміння для обчислення виразів на сумісні дії. Підготовча робота до вивчення письмового множення має бути реалізована в процесі виконання таких завдань:
заміна дії додавання множенням, і навпаки; множення з 0 і 1; множення розрядних чисел на одноцифрове число; застосування властивості множення суми на число до множення виду 14 • 3; розв'язування вправ виду (7 + 6 + 2) × 3.
Перехід від усного множення до письмового треба здійснити так, щоб учні усвідомили необхідність вивчення письмового множення (з цією метою учням потрібно запропонувати текстову задачу практичного змісту). Пояснення. При письмовому множенні другий множник записуємо під першим. Розмістити числа треба так, щоб одиниці другого множника були записані під одиницями першого. Розглянемо приклад.
× 312 3 936
При письмовому множенні починають множити з одиниць: множимо па 3 спочатку 2 од., потім 1 дес. і, нарешті, 3 сот. 2 од. помножити на 3, буде 6 од. Пишемо цифру 6 під одиницями. 1 дес. помножити на 3, буде 3 дес. Пишемо цифру 3 під десятками. З сот. помножити на 3, буде 9 сот. Пишемо цифру 9 на місці сотень. У добутку отримали число 936. Від докладного пояснення обчислення виразів такого виду учні переходять до короткого пояснення.