Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций Основы теории сигналов.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
963.14 Кб
Скачать

2.1.2. Пространство сигналов

Для анализа и обработки информации, которая может быть заключена в сигналах, требуется выделять из множества сигналов сигналы с определенными параметрами, сравнивать сигналы друг с другом, оценивать изменение сигналов при их прохождении через системы обработки данных, и т.п. Это может выполняться только при "помещении" множества сигналов в определенные метрические пространства с заранее оговоренными свойствами и единицами измерений. Так, "квартирное пространство" любого города включает, как минимум, три структурных единицы: названия улиц, номера домов, номера квартир, что и определяет пространство "квартирных сигналов". Но это пространство не является метрическим, так как оно не имеет нулевой точки и единиц измерений, по нему нельзя определить расстояние между двумя "квартирными сигналами". Положение на поверхности Земли любого объекта однозначно определяется по "координатному сигналу" в заранее сформированных метрических координатных пространствах с нулевыми точками и принятыми единицами измерений. Для практического использования сформированы также различные пространства картографических проекций с определенными структурными ограничениями, жестко установленная метрология которых позволяет трансформировать информацию из одного пространства в другое, более удобное для отображения или обработки определенными программами.

Главным условием превращения множество сигналов L{s1(t), s2(t), …}, которые имеют какие-то общие свойства, в функциональное пространство сигналов является выполнение условия однозначной реализации. Если пространство значений независимой переменной t задано выражением R:=(-,+), то пространство сигналов LP[R] определяет множество сигналов в этом пространстве, для которых условие однозначной реализации записывается в следующей форме:

|s(t)|p dt < .

Для анализа сигналов наиболее часто используется гильбертово пространство, сигналы в котором должны удовлетворять условию интегрирования с квадратом:

|s(t)|2 dt < .

Периодические сигналы обычно рассматриваются в пространстве L2 [0, 2 одного периода:

|s(t)|2 dt < .

Метрические пространства должны иметь определенную систему координат, что позволяет рассматривать любые произвольные сигналы х и у, принадлежащие пространству, в виде векторов, соединяющих начало координат с определенными точками этого пространства и определять расстояние (x,y) между этими точками (метрика). Так как расстояние между точками должно быть числовым, а сигналы х и у представляют собой функции, то (x,y) представляет собой функционал, для которого в метрическом пространстве должны быть справедливы следующие аксиомы:

  • (x,y) ≥ 0; (x,y) = 0 при х = у,

  • (x,y) = (y,x),

  • (x,z) ≤ (x,y) + (y,z) – неравенство треугольника.

Каждый элемент векторного пространства может отображаться проекциями на координатные оси, а для обработки и преобразований сигналов могут использоваться операции векторной алгебры. Достаточно простые алгебраические взаимосвязи между сигналами характерны для линейных пространств.