
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
2.1.2. Пространство сигналов
Для анализа и обработки информации, которая может быть заключена в сигналах, требуется выделять из множества сигналов сигналы с определенными параметрами, сравнивать сигналы друг с другом, оценивать изменение сигналов при их прохождении через системы обработки данных, и т.п. Это может выполняться только при "помещении" множества сигналов в определенные метрические пространства с заранее оговоренными свойствами и единицами измерений. Так, "квартирное пространство" любого города включает, как минимум, три структурных единицы: названия улиц, номера домов, номера квартир, что и определяет пространство "квартирных сигналов". Но это пространство не является метрическим, так как оно не имеет нулевой точки и единиц измерений, по нему нельзя определить расстояние между двумя "квартирными сигналами". Положение на поверхности Земли любого объекта однозначно определяется по "координатному сигналу" в заранее сформированных метрических координатных пространствах с нулевыми точками и принятыми единицами измерений. Для практического использования сформированы также различные пространства картографических проекций с определенными структурными ограничениями, жестко установленная метрология которых позволяет трансформировать информацию из одного пространства в другое, более удобное для отображения или обработки определенными программами.
Главным условием превращения множество сигналов L{s1(t), s2(t), …}, которые имеют какие-то общие свойства, в функциональное пространство сигналов является выполнение условия однозначной реализации. Если пространство значений независимой переменной t задано выражением R:=(-,+), то пространство сигналов LP[R] определяет множество сигналов в этом пространстве, для которых условие однозначной реализации записывается в следующей форме:
|s(t)|p dt < .
Для анализа сигналов наиболее часто используется гильбертово пространство, сигналы в котором должны удовлетворять условию интегрирования с квадратом:
|s(t)|2 dt < .
Периодические сигналы обычно рассматриваются в пространстве L2 [0, 2 одного периода:
|s(t)|2
dt < .
Метрические пространства должны иметь определенную систему координат, что позволяет рассматривать любые произвольные сигналы х и у, принадлежащие пространству, в виде векторов, соединяющих начало координат с определенными точками этого пространства и определять расстояние (x,y) между этими точками (метрика). Так как расстояние между точками должно быть числовым, а сигналы х и у представляют собой функции, то (x,y) представляет собой функционал, для которого в метрическом пространстве должны быть справедливы следующие аксиомы:
(x,y) ≥ 0; (x,y) = 0 при х = у,
(x,y) = (y,x),
(x,z) ≤ (x,y) + (y,z) – неравенство треугольника.
Каждый элемент векторного пространства может отображаться проекциями на координатные оси, а для обработки и преобразований сигналов могут использоваться операции векторной алгебры. Достаточно простые алгебраические взаимосвязи между сигналами характерны для линейных пространств.