
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
8.1.3. Применение дпф
Основная область использования ДПФ – спектральный анализ физических данных. При этом интерес обычно представляют только амплитуды отдельных гармоник, а не их фазы, и спектр отображается в виде графика зависимости амплитуды (модуля спектра) от частоты. Часто шкала амплитуд градуируется в децибелах. Децибелы - логарифмы отношения амплитудных значений. Например, разница на 20 дБ означает различие амплитуд в 10 раз, разница на 40 дБ - 100 раз. Различию амплитуд в 2 раза отвечает разница примерно в 6 дБ. Шкала частот также часто градуируется в логарифмическом масштабе.
Перед вычислением спектра из сигнала, как правило, вырезается отрезок сигнала. Число последовательных отсчетов отрезка для использования БПФ должно быть степенью двойки, если в программном обеспечении вычислительной системы не оговорена ее способность выполнять БПФ по произвольным числовым рядам. В противном случае числовой ряд дополняется нулями до необходимого размера, что не изменяет формы спектра и сказывается только на увеличении частотного разрешения по спектру.
При вычислении спектра возможен следующий нежелательный эффект. При разложении участка сигнала в ряд Фурье мы тем самым принимает этот участок за один период Т, который периодически повторяется за пределами участка с фундаментальной частотой 1/Т. При ДПФ, а равно и при БПФ, вычисляется спектр именно такого периодического сигнала. При этом на границах периодов такая функция наверняка будет иметь разрывы или скачки, тем самым существенно искажая спектр. Для устранения этого эффекта применяются так называемые весовые окна, похожие на гауссиан, размер которых равен размеру участка. Анализируемый участок умножается на весовое окно, что плавно сводят сигнал на нет вблизи краев анализируемого участка и в значительной степени устраняют рассмотренные искажения спектра. Методика применения весовых окон подробно рассматривается в курсе цифровой обработки сигналов.
8.2. Преобразование Лапласа
Дискретное преобразование Лапласа (ДПЛ), как и ДПФ, может быть получено из интегрального преобразования дискретизаций аргументов (tk = kt, n = n):
Y(p)
=
y(t)
exp(-pt)
dt,
Y(pn)
= t
y(tk)
exp(-pntk),
(8.7)
где p = +j- комплексная частота, 0.
y(t)
= (1/2j)
Y(p)
exp(pt) dp. y(tk)
= t
Y(pn)
exp(pntk).
(8.8)
Функцию Y(p) называют изображением Лапласа функции y(t) – оригинала изображения. При = 0 преобразование Лапласа превращается в одностороннее преобразование Фурье, а для каузальных сигналов – в полную аналогию ПФ. Преобразование Лапласа применяется для спектрального анализа функций, не имеющих фурье-образов из-за расходимости интегралов Фурье:
Y(p) = y(t) exp(-t-jt) dt = y(t) exp(-t) exp(-jt) dt = y'(t) exp(-jt) dt.
Правый интеграл для каузальных сигналов представляет собой преобразование Фурье, при этом сигнал y'(t) за счет экспоненциального множителя exp(-t) соответствующим выбором значения >0 превращается в затухающий и конечный по энергии. Все свойства и теоремы преобразований Фурье имеют соответствующие аналоги и для преобразований Лапласа.
Пример сопоставления преобразований Фурье и Лапласа приведен на рис. 8.6.
Рис. 8.6. Сопоставление преобразований Фурье и Лапласа
8.3. Z-преобразование сигналов