
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
8.1.2. Быстрое преобразование Фурье
Быстрое преобразование Фурье (БПФ, fast Fourier transform – FFT). Он базируется на том, что при вычислениях среди множителей (синусов и косинусов) есть много периодически повторяющихся значений (в силу периодичности функций). Алгоритм БПФ группирует слагаемые с одинаковыми множителями в пирамидальный алгоритм, значительно сокращая число умножений за счет исключения повторных вычислений. В результате быстродействие БПФ в зависимости от N может в сотни раз превосходить быстродействие стандартного алгоритма. При этом следует подчеркнуть, что алгоритм БПФ даже точнее стандартного, т.к. сокращая число операций, он приводит к меньшим ошибкам округления.
Допустим, что массив чисел sk содержит N = 2r отсчетов (r - целое). Разделим исходный массив на два первых промежуточных массива с четными и нечетными отсчетами:
sk' = s2k, sk" = s2k+1, 0 k N/2-1.
Выполним ДПФ каждого массива с учетом того, что шаг функций равен 2 (при t=1), а период промежуточных спектров будет соответственно равен N/2:
sk' Sn', sk" Sn", 0 n N/2-1.
Для получения одной половины искомого спектра Sn сложим полученные спектры с учетом теоремы запаздывания, т.к. отсчеты функции sk" сдвинуты относительно sk' на один шаг дискретизации:
Sn = Sn'+Sn"exp(-j2n/N). (8.6)
Вторая половина спектра, комплексно сопряженная с первой, с учетом периода повторения N/2 промежуточных спектров определяется выражением:
Sn+N/2 = Sn'+Sn"exp(-j2n+N/2)/N) = Sn'- Sn"exp(-j2n/N). (8.7)
Нетрудно видеть, что для вычисления полного спектра в данном случае потребуется N2/4 операций для вычисления промежуточных спектров плюс еще N операций комплексного умножения и сложения, что создает ощутимый эффект по сравнению с ДПФ.
Но деление массивов на две части может быть применено и к первым промежуточным массивам, и ко вторым, и т.д. до тех пор, пока в массивах не останется по одному отсчету, фурье - преобразование которых равно самому отсчету. Тем самым, алгоритм преобразования превращается в пирамидальный алгоритм перестановок со сложением/вычитанием и с единичным умножением на значение exp(-j2n/N) соответствующего уровня пирамиды. Первый алгоритм БПФ на данном принципе (из множества модификаций, существующих в настоящее время) был разработан Кули-Тьюки в 1965 г. и позволил повысить скорость вычислений в N/r раз по сравнению с ДПФ. Чем больше N, тем больше эффект БПФ. Так, при N = 1024 имеем r = 10 и соответственно N/r 100. Что касается условия по количеству точек N = 2r, то оно рассматривается в варианте Nk 2r, где r - минимальное целое. Массивы с Nk < 2r дополняется до 2r нулями, что не изменяет форму спектра. Изменяется только шаг по представлению спектра (= 2/2r < 2/N), который несколько избыточен по адекватному представлению сигнала в частотной области. В настоящее время существуют и алгоритмы БПФ с другими основаниями и их комбинациями, при которых не требуется дополнения сигналов нулями до 2r. Пример выполнения БПФ приведен на рис. 8.5.
Рис. 8.5. Пример БПФ
Заметим, что в соответствии с (8.7) отсчеты, сопряженные с правой половиной главного частотного диапазона (0, ), относятся не к диапазону (-,0), а к диапазону (,2), что, учитывая периодичность спектра дискретных данных, значения не имеет. Т.е. выходной частотный диапазон БПФ равен (0, 2). Общее количество отсчетов комплексного спектра в этом условно главном диапазоне равно количеству точек исходного сигнала (с учетом нулевых точек при дополнении сигнала до N=2r). Алгоритм быстрого обратного преобразования (ОБПФ) тождественен алгоритму прямого БПФ.
Алгоритмы прямого и обратного БПФ широко используются в современном программном обеспечении для анализа и обработки цифровых данных.