
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
7.1. Задачи дискретизации функций
7.1.1. Сигналы и системы дискретного времени
Значения дискретного сигнала определены только при дискретных значениях времени или любой другой независимой переменной. Обычно его представляют в виде последовательности чисел: s(k) s(kt) sk, k = 0, 1, 2, …, K, где значениями чисел отображают значения сигнала в дискретные моменты времени. Значения интервала дискретизации обычно принято опускать, т.е. принимать равным t = 1, поскольку он является не более чем масштабным множителем по независимой переменной и при постоянном значении во всех параметрах и атрибутах обработки сигналов, включая сопряженные величины (например, масштаб частоты f=1/|t|), его физическая величина может вводиться в результаты на заключительной стадии обработки данных. По существу, при t=1 осуществляется нормирование сигналов и систем их обработки по независимой переменной.
Система дискретного времени – это алгоритм с входной последовательностью s(k) и выходной последовательностью y(k), которая может быть линейной или нелинейной, инвариантной или изменяющейся во времени. Система дискретного времени линейна и инвариантна во времени (ЛИВ-система), если она подчиняется принципу суперпозиции (отклик на несколько входов равен сумме откликов на каждый вход в отдельности), а задержка (сдвиг) входного сигнала вызывает такую же задержку выходного сигнала. Вход и выход ЛИВ-систем связывает сверточная сумма:
y(k)
=
h(n)
x(k-n),
где h(n) – дискретная импульсная характеристика (импульсный отклик) системы. Система устойчива, если выполняется условие:
|h(n)| < ∞.
Это условие справедливо всегда для систем с конечной импульсной характеристикой (КИХ-систем) без особых точек в своем составе, что характерно для нерекурсивных систем с ограниченным числом отсчетов (в общем случае, N1 < n < N2), а также для систем с бесконечной импульсной характеристикой (БИХ-систем), если h(n) → 0 при n → ∞, что должно выполняться для рекурсивных систем.
Физически реализуемой называется система, если ее импульсная характеристика существует только при n≥0.
7.1.2. Принципы дискретизации
Сущность дискретизации аналоговых сигналов заключается в том, что непрерывность во времени аналоговой функции s(t) заменяется последовательностью коротких импульсов, амплитудные значения которых cn определяются с помощью весовых функций, либо непосредственно выборками (отсчетами) мгновенных значений сигнала s(t) в моменты времени tn. Представление сигнала s(t) на интервале Т совокупностью дискретных значений cn записывается в виде:
(с1, с2, ... , cN) = А[s(t)],
где А – оператор дискретизации.
Запись операции восстановления сигнала s(t):
s'(t) = В[(с1, с2, ... , cN)].
Выбор операторов А и В определяется требуемой точностью восстановления сигнала. Наиболее простыми являются линейные операторы. В общем случае:
сn
=
qn(t)
s(t)
dt,
(7.1)
где qn(t) – система весовых функций.
Отсчеты в выражении (7.1) связаны с операцией интегрирования, что обеспечивает высокую помехоустойчивость дискретизации. Однако в силу сложности технической реализации "взвешенного" интегрирования, последнее используется достаточно редко, при высоких уровнях помех. Более широкое распространение получили методы, при которых сигнал s(t) заменяется совокупностью его мгновенных значений s(tn) в моменты времени tn. Роль весовых функций в этом случае выполняют гребневые (решетчатые) функции. Отрезок времени t между соседними отсчетами называют шагом дискретизации. Дискретизация называется равномерной с частотой F=1/t, если значение t постоянно по всему диапазону преобразования сигнала. При неравномерной дискретизации значение t между выборками может изменяться по определенной программе или в зависимости от изменения каких-либо параметров сигнала.