Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций Основы теории сигналов.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
963.14 Кб
Скачать

6.3.4. Вычисление корреляционных функций при помощи бпф

Вычисление корреляционных функций при помощи БПФ является, особенно для длинных числовых рядов, в десятки и сотни раз более быстрым методом, чем последовательными сдвигами во временной области при больших интервалах корреляции. Суть метода вытекает из формул (6.21) для АКФ и (6.25) для ВКФ. Учитывая, что АКФ можно рассматривать как частный случай ВКФ при одном и том же сигнале, процесс вычисления рассмотрим на примере ВКФ для сигналов x(k) и y(k) с числом отсчетов К. Он включает:

1. Вычисление БПФ спектров сигналов x(k) → X(k) и y(k) → Y(k). При разном количестве отсчетов более короткий ряд дополняется нулями до размера большего ряда.

2. Вычисление спектров плотности мощности Wxy(k) = X*(k) Y(k).

3. Обратное БПФ Wxy(k) → Bxy(k).

Отметим некоторые особенности метода.

При обратном БПФ, как известно, вычисляется циклическая свертка функций x(k) ③ y(k). Если число отсчетов функций равно К, число комплексных отсчетов спектров функций также равно К, равно как и число отсчетов их произведения Wxy(k). Соответственно, число отсчетов Bxy(k) при обратном БПФ также равно К и циклически повторяется с периодом, равным К. Между тем, при линейной свертке полных массивов сигналов по формуле (6.18) размер только одной половины ВКФ составляет К точек, а полный двусторонний размер составляет 2К точек. Следовательно, при обратном БПФ с учетом цикличности свертки произойдет наложение на главный период ВКФ ее боковых периодов, как и при обычной циклической свертке двух функций.

На рис. 6.11 приведен пример двух сигналов и значения ВКФ, вычисленные линейной сверткой (В1ху) и циклической сверткой через БПФ (В2ху). Для исключения эффекта наложения боковых периодов необходимо дополнить сигналы нулями, в пределе, до удвоения количества отсчетов, при этом результат БПФ (график В3ху на рисунке 6.11) полностью повторяет результат линейной свертки (с учетом нормировки на увеличение количества отсчетов).

Рис. 6.11

В1 – линейная свертка, В2 – БПФ без продления сигналов нулями, В3 – БПФ с продлением сигналов нулями

На практике число нулей продления сигналов зависит от характера корреляционной функции. Минимальное количество нулей обычно принимается равным значимой информационной части функций, т.е. порядка (3-5) интервалов корреляции.

Лекция 7 дискретизация сигналов

Введение

В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.

Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.

Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации. Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.