
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
4.2.2. Преобразование Лапласа
Если условие (4.18) не выполняется, то определенные приближения спектральных плотностей вычисляются с использованием специальных методов, одним из которых является одностороннее преобразование Лапласа.
Допустим, что функция s(t) задана на интервале (0, ), равна нулю при t<0, а интеграл спектральной функции (4.11) расходится. Умножим s(t) на экспоненциальную функцию exp(-t), где - положительная константа, и выберем значение таким, чтобы произведение u(t) = s(t)exp(-t) удовлетворяло условию абсолютной интегрируемости. Сущность данной операции хорошо видна на рис. 4.16 (=с). Интегрируемость функции u(t) может быть установлена для любой функции s(t) соответствующим выбором коэффициента . При этом спектральная плотность функции u(t) может быть вычислена по формуле (4.11):
U(,) = [s(t) exp(-t)] exp(-jt) dt.
Рис. 4.16
После объединения экспоненциальных функций это выражение можно переписать следующим образом:
U(+j) = s(t) exp[-(+jt] dt. (4.19)
Соответствующее обратное преобразование Фурье функции U(+j):
(1/2) U(+j) exp(jt) d = s(t) exp(-t).
Для восстановления функции s(t) достаточно умножить обе части данного выражения на exp(t), объединить экспоненциальные множители под интегралом и заменить переменную интегрирования на +j:
s(t)
= (1/2j)
S(+j)
exp[(+jt]
d(+j2
Обозначим комплексную переменную +j в выражениях (4.19, 4.20) через р (оператор Лапласа) и получим общепринятую форму прямого и обратного преобразования Лапласа:
S(p) = s(t) exp[-pt] dt. (4.19')
s(t) = (1/2j) S(p) exp(pt) dp20'
Сигнальную функцию s(t) в преобразованиях Лапласа обычно называют оригиналом, а ее спектральную функцию S(p) – изображением оригинала. Пример спектральной функции Лапласа для оригинала – сложного и неограниченного во времени сигнала, состоящего из каузальной суммы трех гармоник, приведен на рис. 4.17. По спектральной функции Лапласа можно выделить эти три основных частоты сигнала и оценить соотношение их амплитуд. Ширина пиков спектральной функции при выделении "чистых" гармоник зависит от значения коэффициента и уменьшается при его уменьшении.
Рис. 4.17 – Сигнал и его спектральная функция Лапласа при p=0.0005+j
Преобразование Лапласа справедливо только в области сходимости интеграла (4.19), которая определяется абсциссой абсолютной сходимости 0 (при ≥ 0):
|s(t) exp(-(+j)t)| dt = |s(t)||exp(-jt)| exp(-t) dt = |s(t)| exp(-t) dt < ∞.
Если вместо р в изображениях оригинала подставить переменную j, то будут получены спектральные функции, полностью идентичные преобразованию Фурье каузальных функций (имеющих нулевые значения при t<0).
4.2.3. Обобщенный ряд Фурье
Тригонометрические
функции не является единственно
возможными функциями разложения
сигналов. В общем случае разложение
сигнала s(t) на интервале (a, b) в ряд вида
ckk(t)
может быть выполнено по произвольным
функциям k(t).
При задании минимальной погрешности
приближения
s
=
[s(t)
-
ckk(t)]2
dt
коэффициенты ck могут быть найдены из системы линейных уравнений:
=
[s(t)
-
ckk(t)]2
dt = 0, k = 0,1,2,…N.
При линейной независимости функций k(t) данная система уравнений имеет единственное решение. Если все функции k(t) взаимно ортогональны и соответствующей нормировкой обеспечена их ортонормированность
m(t)
n(t)
dt =
,
то процесс нахождения коэффициентов ck оказывается наиболее простым:
ck = s(t) k(t) dt,
и для принятого значения N погрешность приближения s является минимальной. Если при N имеет место s 0, система функций k(t) называется базисной системой координат пространства сигналов L2[a, b] . При этом имеет место равенство:
s(t)
=
ckk(t).
Разложение по ортонормированной системе базисных функций называется обобщенным рядом Фурье, а набор коэффициентов ck представляет собой спектр функции s(t) в соответствующем базисе. В зависимости от специфики решаемых задач применяются различные системы базисных функций. В частности, используются разложения по полиномам Лежандра, Чебышева, Лагерра, Эрмита, функциям Хаара и Уолша и т.п.