
- •Министерство образования и науки Российской Федерации
- •Факультет физики, математики, информатики Кафедра нанотехнологии
- •Конспект лекций по дисциплине «Основы теории сигналов»
- •Лекция 1 Введение в теорию сигналов
- •1.1. Общие сведения и понятия
- •1.1.1. Понятие сигнала
- •1.1.2. Шумы и помехи
- •1.1.3. Размерность сигналов
- •1.1.4. Математическое описание сигналов
- •1.1.5. Спектральное представление сигналов
- •1.1.6. Математические модели сигналов
- •1.1.7. Виды моделей сигналов
- •1.1.8. Классификация сигналов
- •1.2. Типы сигналов
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
- •Спектральное представление сигналов
- •4.1. Разложение сигналов по гармоническим функциям
- •4.1.1. Понятие собственных функций
- •4.1.2. Ряды Фурье
- •4.1.3. Тригонометрическая форма рядов Фурье
- •4.1.4. Эффект Гиббса
- •4.2. Непрерывные преобразования Фурье и Лапласа
- •4.2.1. Интеграл Фурье
- •4.2.2. Преобразование Лапласа
- •4.2.3. Обобщенный ряд Фурье
- •4.3. Свойства преобразований Фурье
- •4.4. Спектры некоторых сигналов
- •Энергетические спектры сигналов
- •5.1. Мощность и энергия сигналов
- •5.2. Энергетические спектры сигналов
- •5.2.1. Скалярное произведение сигналов
- •5.2.2. Взаимный энергетический спектр
- •5.2.3. Энергетический спектр сигнала
- •Корреляция сигналов
- •6.1. Автокорреляционные функции сигналов
- •6.1.1. Понятие автокорреляционных функций сигналов
- •6.1.2. Акф сигналов, ограниченных во времени
- •6.1.3. Акф периодических сигналов
- •6.1.4. Акф дискретных сигналов
- •6.1.5. Акф зашумленных сигналов
- •6.2. Взаимные корреляционные функции сигналов
- •6.2.1. Взаимная корреляционная функция
- •6.2.2. Взаимная корреляция зашумленных сигналов
- •6.2.3. Вкф дискретных сигналов
- •6.2.4. Оценка периодических сигналов в шуме
- •6.2.5. Функция взаимных корреляционных коэффициентов
- •6.3. Спектральные плотности корреляционных функций
- •6.3.1. Спектральная плотность акф
- •6.3.2. Интервал корреляции сигнала
- •6.3.4. Вычисление корреляционных функций при помощи бпф
- •Лекция 7 дискретизация сигналов
- •7.1. Задачи дискретизации функций
- •7.1.1. Сигналы и системы дискретного времени
- •7.1.2. Принципы дискретизации
- •7.1.3. Воспроизведение непрерывного сигнала
- •7.2. Равномерная дискретизация
- •7.2.1. Спектр дискретного сигнала
- •7.2.2. Интерполяционный ряд Котельникова-Шеннона
- •7.3. Дискретизация спектров
- •7.4. Соотношение спектров одиночного и периодического сигналов
- •7.5. Дискретизация по критерию наибольшего отклонения
- •7.6. Адаптивная дискретизация
- •7.7. Квантование сигналов
- •7.8. Децимация и интерполяция данных
- •Дискретные преобразования сигналов
- •8.1. Преобразование Фурье
- •8.1.1. Дискретное преобразование Фурье
- •8.1.2. Быстрое преобразование Фурье
- •8.1.3. Применение дпф
- •8.2. Преобразование Лапласа
- •8.3.1. Определение преобразования
- •8.3.2. Примеры z-преобразования
- •8.3.3. Связь с преобразованиями Фурье и Лапласа
- •8.3.4. Свойства z-преобразования
- •8.3.5. Отображение z-преобразования
- •8.4. Дискретная свертка (конволюция)
2.2. Мощность и энергия сигналов
Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений (отсчетов) во времени, в пространстве или по любым другим аргументам.
Для произвольного, в общем случае комплексного, сигнала s(t) = a(t)+jb(t), где а(t) и b(t) – вещественные функции, мгновенная мощность (instantaneous power) сигнала по определению задается выражением:
w(t) = s(t) s*(t) = [a(t)+jb(t)] [a(t)-jb(t)] = a2(t)+b2(t) = |s(t)|2, (2.9)
т.е. функция распределения мгновенной мощности по аргументу сигнала равна квадрату функции его модуля, для вещественных сигналов – квадрату функции амплитуд.
Аналогично для дискретных сигналов:
wn = sn s*n = [an+jbn] [an-jbn] = an2 + bn2 = |sn|2, (2.9')
Энергия сигнала (также по определению) равна интегралу от мощности по всему интервалу существования или задания сигнала. В пределе:
Еs = w(t)dt = |s(t)|2dt. (2.10)
Es
=
wn
=
|sn|2.
(2.10')
Мгновенная мощность w(t) является плотностью мощности сигнала, так как измерения мощности возможны только через энергию на интервалах ненулевой длины:
w()
= (1/t)
|s(t)|2dt
Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.
Как правило, сигналы изучаются на определенном интервале Т, для периодических сигналов – в пределах одного периода Т, при этом средняя мощность (average power) сигнала:
WT()
= (1/T)
w(t)
dt=
(1/T)
|s(t)|2
dt.
(2.11)
Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала должно производиться по формуле:
Ws
=
w(t)
dt. (2.11')
Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (root mean sqare, RMS).
Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):
w(t) = |s(t)|2/R,
а полная выделенная на резисторе тепловая энергия определяется соответствующим интегрированием мгновенной мощности w(t) по интервалу задания напряжения s(t) на резисторе R. Физическая размерность мощности и энергии в этом случае определяется соответствующей физической размерностью функции напряжения s(t) и сопротивления резистора R. Для безразмерной величины s(t) при R=1 это полностью соответствует выражению (2.2.1). В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналов используются в более широком смысле, чем в физике. Они представляют собой метрологические характеристики сигналов.
Из сравнения выражений (2.9) и (2.10) следует, что энергия и норма сигнала связаны соотношениями:
Es
= ||s(t)||2,
||s(t)|| =
(2.12)
Пример. Цифровой сигнал задан функцией s(n) = {0,1,2,3,4,5,4,3,2,1,0,0,0,0....}.
Энергия сигнала:
Es
=
s2(n)
= 1+4+9+16+25+16+9+4+1 = 85.
Норма:
||s(n)|| =
9.22
Вычислим энергию суммы двух произвольных сигналов u(t) и v(t)
E = [u(t)+v(t)]2 dt = Eu + Ev + 2 u(t)v(t) dt. (2.13)
Как следует из этого выражения, энергия сигналов (а равно и их мощность), в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию
Euv = 2 u(t)v(t) dt. (2.14)
Нетрудно заметить, что энергия взаимодействия сигналов равна их удвоенному скалярному произведению
Euv = 2 u(t), v(t). (2.14')
При обработке данных используются также понятия мощности взаимодействия двух сигналов x(t) и y(t):
wxy(t) = x(t) y*(t), (2.15)
wyx(t) = y(t) x*(t),
wxy(t) = w*yx(t).
Для вещественных сигналов:
wxy(t) = wyx(t) = x(t) y(t). (2.16)
С использованием выражений (2.15-2.16) интегрированием по соответствующим интервалам вычисляются значения средней мощности взаимодействия сигналов на определенных интервалах Т и энергия взаимодействия сигналов.