Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций Основы теории сигналов.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
963.14 Кб
Скачать

2.1.7. Корреляция сигналов

Заметим, что значение косинуса в (2.8) изменяется от 1 до -1, и не зависит от нормы сигналов ("длины" векторов). Максимальное значение cos  = 1 соответствует полной тождественности относительной динамики сигналов, минимальное значение cos  = -1 наблюдается при полной противоположности значений относительной динамики сигналов. По существу, коэффициент r = cos является интегральным коэффициентом степени сходства формы сигналов по пространству их задания. С учетом этого он и получил название коэффициента корреляции сигналов. На рис. 2.5 можно наглядно видеть значения коэффициента корреляции двух сигналов в зависимости от их формы и сдвига по независимой переменной.

Однако количественные значения коэффициентов корреляции существенно зависят от выбора нулевой точки сигнального пространства. Рассмотрим это детально на конкретном примере.

На рис. 2.6 приведено изменение средней месячной температуры воздуха в трех городах земного шара в течение одного календарного года. Характер корреляции между изменениями температур в городах достаточно хорошо виден на графиках. Вычислим (см. пример ниже) значения коэффициентов корреляции для шкалы температур по Цельсию.

Рис. 2.5

Рис. 2.6

Пример. Среднемесячная температура воздуха в городах по Цельсию:

Екатеринбург: Ek = {-12,-10,-4,5,11,19,23,21,15,5,-3,-8}.

Дели: Dk = {15,18,22,28,33,35,33,32,30,28,21,17}.

Буэнос-Айрес: Bk = {26,24,21,18,14,11,10,10,12,15,20,23}.

Нумерация месяцев: k = 1, 2, 3, …, 12.

Норма сигналов: ||E|| = = 45.39, ||D|| = = 93.05, ||B|| = = 61.9.

Скалярные произведения: E, D = = 2542, E, B = 268, B, D = 4876.

Коэффициенты корреляции:

Екатеринбург – Дели: rED = E, D / (||E|| ||D||) = 0.602.

Екатеринбург – Буэнос-Айрес: rEB = 0.095,

Дели – Буэнос-Айрес: rDB = 0.847,

Как следует из вычислений, полученные коэффициенты корреляции маловыразительны. Практически не регистрируется разнонаправленная корреляция Екатеринбург – Буэнос-Айрес, и не различаются одно- (Екатеринбург – Дели) и разнонаправленные (Дели – Буэнос-Айрес) типы корреляции.

Повторим вычисления в шкале Фаренгейта (0оF = -17,8oC, 100oF = +37,8oC), и в абсолютной шкале температур Кельвина. Дополнительно вычислим значения коэффициентов корреляции в шкале Цельсия и Фаренгейта для центрированных сигналов. Центрированный сигнал вычисляется путем определения среднего значения сигнала по интервалу его задания и вычитания этого среднего значения из исходных значений сигнала, т.е. среднее значение центрированного сигнала равно нулю. Сводные результаты вычислений приведены в таблице.

Таблица 2.1.

Коэффициенты корреляции сигналов

Пары городов

Нецентрированные сигналы

Центрированные сигналы

Цельсий

Фаренгейт

Кельвин

Цельсий

Фаренгейт

Екатеринбург – Дели

Екатеринбург – Буэнос-Айрес

Дели – Буэнос-Айрес

0.602

0.095

0.847

0.943

0.803

0.953

1

0.998

0.999

0.954

-0.988

-0.960

0.954

-0.988

-0.960

Как видно из таблицы, значения коэффициента корреляции нецентрированных сигналов существенно зависят от положения сигналов относительно нулевой точки пространства. При одностороннем смещении сигналов относительно нуля (шкала Фаренгейта) значение коэффициента корреляции может быть только положительным, и тем ближе к 1, чем дальше от сигналов нулевая точка (шкала Кельвина), т.к. при больших значениях сигналов-векторов значение скалярного произведения сигналов стремится к значению произведения норм сигналов.

Для получения значений коэффициентов корреляции, независимых от нуля сигнального пространства и от масштаба единиц измерений, необходимо вычислять коэффициент по центрированным сигналам, при этом в оценках коэффициента, как это видно из результатов, приведенных в таблице, появляется знаковый параметр совпадения или несовпадения по "направлению" корреляции и исчезает зависимость от масштаба представления сигналов. Это позволяет вычислять коэффициенты корреляции различных сигналов вне зависимости от физической природы сигналов и их величины.