
- •Основы строительного грунтоведения Грунтовые основания. Происхождение и условия формирования грунтов
- •Классификация горных пород и грунтов
- •Состав грунтов. Форма, размеры, взаимное расположение и свойства минеральных частиц. Органические примеси. Виды воды в грунтах и их свойства. Роль газообразной составляющей
- •Структурные связи между минеральными частицами. Понятие о внутреннем трении в грунтах
- •Трещины и их влияние на свойства грунтов
- •Основные физические характеристики грунтов. Дополнительные характеристики грунтов.
- •Механические характеристики грунтов
- •Геологическое строение оснований. Понятие о геологическом теле
- •Особые виды грунтов с неустойчивыми структурными связями
- •Модели механического поведения грунтов. Методы решения задач механики грунтов
- •Определение напряжений в массивах грунтов
- •Основные схемы лабораторных испытаний. Режимы испытания образцов
- •Одноосное, сдвиговое, трехосное испытания. Закон Кулона. Угол внутреннего трения. Удельное сцепление. Давление связности. Условие предельного равновесия
- •Полевые методы определения прочностных и деформационных характеристик грунтов
- •1) Гост 30416-96 – Грунты. Лабораторные испытания. Общие положения.
- •2) Гост 5180-84 (2005) – Грунты. Методы лабораторного определения физических характеристик.
Определение напряжений в массивах грунтов
Напряжения в массивах грунтов, служащих основанием, средой или материалом для сооружения, возникают под воздействием внешних нагрузок и собственного веса грунта. Знание напряжений необходимо для расчетов деформаций грунтов, обуславливающих осадки и перемещения сооружений, для оценки прочности, устойчивости грунтов и давления на ограждения. Кроме того, для расчетов конструкций фундаментов сооружений необходимо знать реактивные напряжения, возникающие в контакте между фундаментом и основанием.
Распределение напряжений в грунтовой толще зависит от многих факторов. Прежде всего к ним относятся характер и режим нагружения массива, инженерно-геологические и гидрогеологические особенности площадки строительства, состав и физико-механические свойства грунтов. Формирование напряжений в грунтовой толще происходит не мгновенно при приложении нагрузки, а может развиваться весьма длительное время. Это связано со скоростью протекания деформаций и особенно сильно проявляется в пылевато-глинистых грунтах, где процессы ползучести развиваются очень медленно.
Под действием собственного веса в массивах грунтов всегда формируется начальное напряженное состояние. Поэтому напряжения, возникающие в массивах грунтов от действия сооружения, накладываются на уже имеющиеся в нем собственные напряжения.
Это приводит к формированию сложного поля напряжений в грунтовой толще. Таким образом, определение напряжений в массиве грунтов представляет собой сложную задачу. Во многих случаях при инженерных расчетах решение этой задачи основывается на ряде упрощающих допущений, рассм ранее.
Определенное с помощью теории упругости поле напряжений соответствует конечному, стабилизированному, состоянию грунтов, т. е. тому моменту времени, когда все деформации, вызванные приложением нагрузок, уже завершились. В особых случаях, при проектировании наиболее ответственных -сооружений, а также при строительстве в сложных грунтовых условиях, применяются и более сложные модели, позволяющие определять изменение поля напряжений в процессе деформирования грунтов.
Одним из важнейших следствий применения теории упругости к расчетам напряжений в грунтах является постулирование принципа суперпозиции, т- е. независимости действия сил. Это позволяет рассчитывать напряжения в массиве от действия собственного веса грунта и нагрузок, вызываемых сооружением, независимо друг от друга и, суммируя полученный результат, определять общее поле напряжений.
Основные схемы лабораторных испытаний. Режимы испытания образцов
Под механическими свойствами грунтов понимают их способность сопротивляться изменению объема и формы в результате силовых (поверхностных и массовых) и физических воздействий. Механические характеристики грунтов, в зависимости от действующих напряжений, разделяют на: деформационные, при допредельном по прочности напряженном состоянии грунта, которые определяют способность грунта сопротивляться развитию деформаций; прочностные, при предельном по прочности напряженном состоянии грунта, которые определяют способность грунта сопротивляться разрушению; фильтрационные, для случая грунтовой массы, которые определяют развитие процессов деформирования и разрушения грунта во времени.
Основные схемы лабораторных испытаний представлены на рис.
Основные схемы испытаний образцов:
а – одноосное; б – компрессионное; в – сдвиговое; г – трехосное в стабилометре; д – трехосное в приборе с независимыми главными напряжениями; Fx, Fy, Fz – нормальные силы; Т – сдвигающая сила; σ – нормальные напряжения; τ - касательные напряжения
Схему одноосного сжатия (возможно и растяжения) образца применяют только для испытаний прочных связных грунтов (скальные, мерзлые, плотные маловлажные глины). Особенностью данной схемы является отсутствие в образцах боковых напряжений и возможность неограниченного развития боковых деформаций. Схема может быть использована для определения деформационных и прочностных характеристик.
Схема компрессионных испытаний применяется для определения деформационных характеристик сыпучих и связных грунтов. Особенностью данной схемы является невозможность развития боковых деформаций образцов, поскольку испытания грунта происходят в жесткой обойме в виде кольца.
Измерение возникающих боковых напряжений в стандартном компрессионном приборе невозможно.
Схема одноплоскостного сдвига применяется для определения прочностных характеристик сыпучих и связных грунтов. Особенностью данной схемы является наличие фиксированной поверхности разрушения образца и изменчивость значений нормальных и сдвигающих напряжений в процессе сдвига.
Схемы трехосных испытаний применяются для наиболее точного определения деформационных и прочностных характеристик сыпучих и связных грунтов. Различают схемы стабилометрического нагружения цилиндрического образца и нагружения кубического образца независимыми нормальными напряжениями. Особенностями данных схем является возможность разрушения образца по произвольной площадке, где будет предельное соотношение между нормальными и сдвигающими напряжениями.
Испытания образцов проводят по режимам статического и динамического нагружения. Статическое нагружение заключается в медленном изменении прикладываемых к образцам ступеней нагрузки после стабилизации деформаций от предыдущих ступеней. Динамическое нагружение имитирует импульсное или вибрационное воздействие, например от механизмов.
Компрессионное испытание см ранее.