
- •4 Проектный и проверочные расчеты закрытых передач (редуктора). Расчет геометрических параметров зубчатых колес (червяка, червячного колеса)
- •4.1.2 Проектный расчет червячной передачи
- •4.1.3 Проверочные расчеты на прочность червячной передачи
- •4.1.3.1 Проверочный расчет на контактную выносливость
- •4.1.3.2 Проверочный расчет на выносливость при изгибе
- •4.1.4 Параметры червячной передачи
- •4.1.5 Усилия в зацеплении
- •4.1.6 Расчет вала червяка на жесткость
- •4.1.7 Тепловой расчет червячного редуктора
- •4.2 Расчет косозубой цилиндрической передачи
- •4.2.1 Выбор материала и определение допускаемых напряжений
- •4.2.3 Определение геометрических параметров зубчатого зацепления Начальный диаметр колеса:
- •4.2.4 Проверочный расчет закрытых зубчатых передач на контактную выносливость
- •4.2.5 Проверочный расчет зубьев на выносливость при изгибе
- •4.2.6 Определение параметров зубчатых колес
- •4.2.7 Усилия в зацеплении
4.1.5 Усилия в зацеплении
Определение усилий в зацеплении червячной передачи необходимо для расчета валов и подбора подшипников.Основные усилия, возникающие в червячном зацеплении, показаны на рисунке 5.2.
Рисунок 5.2– Силы в червячной передаче
Расчет сил производим по [1] с. 63:
Окружное усилие на червяке Ft1 равно осевому усилию на червячном колесе Fа2:
,
(4.12)
Окружное усилие на червячном колесе Ft2 равно осевому усилию на червяке Fа1:
,
(4.13)
Радиальное усилие на червяке Fr1 равно радиальному усилию на червячном колесе Fr2:
,
(4.14)
где α – угол профиля. α = 20о.
Н;
Н;
Н.
4.1.6 Расчет вала червяка на жесткость
Правильность зацепления червячной пары обеспечивает достаточная жесткость червяка. Критерием жесткости является значение прогиба f, мм, в среднем сечении червяка, которое не должно превышать допустимого f ≤ [f]. Обычно принимают [f] = (0,005-0,01)m.
Величину прогиба определяем по [1] с. 64:
(4.15)
где l – расстояние между опорами. l = 200 мм( принимаем из компоновки
редуктора, приложения 1).
Е – модуль упругости. Для стали Е =
2∙105
МПа.
Iпр – приведенный момент инерции, мм4. Определяемый по [1] с. 64:
,
(4.16)
df1 = 68 мм;
dа1 = 90 мм;
мм4;
мм.
[f] = (0,005-0,01)m = (0,005-0,01)5 = 0,0025-0,05.
Т.к. f ≤ [f], то условие выполняется.
4.1.7 Тепловой расчет червячного редуктора
При работе червячной передачи значительная часть мощности расходуется на преодоление трения, в результате чего происходит нагревание редуктора. Выделяемое тепло отводится в окружающую среду через стенки корпуса редуктора. В случае недостаточного отвода тепла редуктор перегревается и выходит из строя. Поэтому необходимо производить тепловой расчет с целью определения температуры масла, которая не должна превышать допускаемой величины.
Температура масла определяется по [1] формула 5.6:
,
(4.17)
где[tм] – допускаемая температура масла (80-90оС);
Р1 – мощность, подводимая к редуктору, Р1=3692 Вт
tв – температура окружающей среды tв = 20оС;
Кt – коэффициент теплопередачи, по [1] с. 64, Кt = 90 Вт/м2∙град;
A – площадь поверхности охлаждения, A = 0,51 м2;
η – КПД передачи. Определяется по [1] с. 64:
,
(4.18)
где ρ/ - приведенный угол трения. Выбирается в зависимости от скорости скольжения по [1] табл. 5.9, ρ/ = 1о;
γ – угол подъема винтовой линии, формула 4.6:
оС.
Т.к. tм < [tм], то условие выполняется.
4.2 Расчет косозубой цилиндрической передачи
4.2.1 Выбор материала и определение допускаемых напряжений
Выбираем материал колеса: сталь 40Х, HB=300, термообработка – улучшение.
Допускаемые контактные напряжения для зубчатых колес [σН1]и [σН2] определяются по формуле (3.1) [1], с.28:
,
(4.19)
где SH – коэффициент запаса прочности таблица 3.1. [1], с.28, принимаем SH=1,1;
– коэффициент,
учитывающий шероховатость поверхности
зубьев;
– коэффициент,
учитывающий окружную скорость;
– коэффициент,
учитывающий влияние смазки;
– коэффициент,
учитывающий размер зубчатого колеса.
При
проектировочных расчетах по ГОСТ 21354
принимаем
;
[1], c.28.
– предел
контактной выносливости поверхности
зубьев, МПа. Определяется по формуле
[1],
c.28.
=
(4.20)
где
– коэффициент долговечности, принимаемый
равным
;
– предел
контактной выносливости поверхности,
соответствующей базовому числу циклов
перемены напряжений, МПа (зависит от
твердости материала зубьев, таблица
3.2 [1], с.32.
=2НВ+70
(4.21)
=2·300+70=670
МПа
=2·280+70=630
МПа
Определив
величины
и
,
в качестве допускаемого контактного
напряжения принимаем для проектировочного
расчета:
– для косозубого и шевронного зацепления.
При этом должно выполняться условие
,
где
–
меньшее из двух значений
и
.
Иначе принимают
.
[σH]=0,45(515,45+548,18)=478,63 МПа
[σH]≤1,23·515,45=634 МПа
Допускаемое
напряжение на выносливость зубьев при
изгибе
,
МПа, определяют раздельно для шестерни
и колеса по формуле (3.2) [1],
с.32
(4.22)
где
– предел выносливости зубьев при изгибе,
соответствующей эквивалентному числу
циклов перемены напряжений, МПа:
;
–
предел
выносливости зубьев при изгибе,
соответствующий базовому числу циклов
перемены напряжений, МПа. Определяется
по таблице 3.2 [1],
с.32, в зависимости
от способа термической или химико-термической
обработки;
=1,8∙НВ∙
1,1 (4.23)
=1,8·300=540
МПа
=1,8·280=504
МПа
–
коэффициент,
учитывающий влияние шлифования переходной
поверхности зуба. При
улучшении
=
1,1,[1], c.32
– коэффициент,
учитывающий влияние деформационного
упрочнения или электрохимической
обработки переходной поверхности
зубьев. Для
зубьев колес без деформационного
упрочнения или электрохимической
обработки переходной поверхности зубьев
принимают
,[1],
c.32
– коэффициент,
учитывающий влияние двухстороннего
приложения нагрузки. При
двухстороннем (реверсивном) приложении
нагрузки
,[1],
c.32
– коэффициент
долговечности; для длительно работающих
передач, принимается
,[1],
c.32
Учитывая
все найденные коэффициенты определим
:
[σ]Flim1=540·1,1·1·1·1=594
МПа;
[σ]Flim2=504·1,1·1·1·1=554,4 МПа;
– коэффициент
безопасности, который равен таблица
3.1 [1], c. 29
– коэффициент,
учитывающий градиент напряжения и
чувствительность материала к концентрации
напряжений, определяется по графику
3.1 [1], с.33;
– коэффициент,
учитывающий шероховатость переходной
поверхности.
При нормализации и улучшении = 1, [1], c.33
– коэффициент,
учитывающий размеры зубчатого колеса.
Определяют в зависимости от диаметра
вершин зубчатого колеса,
=
1, [1], c.33
Определив
все величины и коэффициенты, входящие
в формулу, находим
:
[σF1]=594/1,75·1·1·1=339,4 МПа;
[σF2]=554,4/1,75·1·1·1=295,3 МПа.
4.2.2 Проектировочный расчет закрытых цилиндрических зубчатых передач на контактную выносливость
При проектировочном расчете ориентировочно определяют начальный диаметр шестерни (мм) по формуле (3.3) [1], с.34:
(4.24)
где
– вспомогательный коэффициент, равный
675 МПа для косозубых и шевронных колес;
– крутящий
момент на ведущем валу, равный 11,88 Н·м;
KHβ –коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца, зависящий от твердости и расположения колес относительно опор, рисунок. 3.2 [1], с.35;
KHβ=1,05
KA – коэффициент внешней динамической нагрузки таблица 3.3 [1], с.34;
KA=1
U – передаточное число рассчитываемой зубчатой пары, U=2,2
ψbd – коэффициент ширины зубчатого венца, задается в соответствии с таблицей 3.4[1], с.34;
ψbd=1,1
– допускаемые
контактные напряжения определяются в
соответствии с п. 4.2.1