- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
Вопросы для самопроверки
1. Какие матрицы называются равными?
2. В каких случаях возможно перемножение двух матриц?
3. В каких случаях существуют произведения как АВ так и ВА?
4. Что называется минором и алгебраическим дополнением элементов матрицы? В чем отличие между ними?
5. Сформулируйте правило Крамера.
6. Как осуществляется транспонирование матрицы?
7. В чем суть метода элементарных преобразований получения обратной матрицы?
8. Что такое ранг матрицы?
9. Что такое основная и расширенная матрицы системы?
10. Сформулируйте и поясните на примерах теорему Кронекера-Капелли.
Тема 1.2. Элементы векторной алгебры
1.2.1. Векторы, операции над векторами. Декартов базис
Для отвлеченного изображения конкретных векторных величин используются векторы. Вектором (геометрическим) называется направленный отрезок прямой. Два вектора называются равными, если они сонаправлены и имеют одинаковую длину. Положение начальной точки таких векторов не играет никакой роли. Поэтому геометрические векторы называются свободными.
При изучении темы «Векторная алгебра» студенту следует обратить внимание на ниже рассмотренные вопросы.
1. Линейные операции над векторами (сложение, вычитание, умножение на число).
Векторы необходимо уметь складывать как по правилу треугольника, так и по правилу параллелограмма.
2. Линейная комбинация векторов. Линейная зависимость и независимость векторов. Базисные векторы. Декартов базис.
Пример 1.2.1. Указать при каких значениях α и β возможно равенство
αa + βb = 0, где а° и b° единичные векторы
(a0=a / |a|, b0=b / |b|). Для решения приведенной задачи необходимо
рассмотреть возможное расположение векторов а и b:
Рис .1.2.1 Pис .1.2.2 Рис .1.2.3
a) векторы а и b сонаправлены (Рис. 1.2.1), тогда α=-β;
b) векторы а и b имеют противоположное направление (рис.1.2.2). В этом случае α=β ;
с) векторы а и b образуют между собой угол φ. При этом угол φ отличен от 0 и π радиан (рис.1.2.3). Приведенное в условии равенство возможно лишь при α=β=0.
Рассмотренный пример дает представление о линейной зависимости и независимости векторов (важнейшее положение темы «Векторная алгебра»).
Л
инейной
комбинацией п
векторов хi
(i=1,n)
называется сумма произведений этих
векторов на действительные числа аi
(i=1,n),
а именно
В
рассмотренном примере записана линейная
комбинация 2х
единичных
векторов а° и b° ) .
В екторы хi (i=l,n) называются линейно-зависимыми, если их линейная комбинация (1.2.1) равна нулю, а среди коэффициентов ai(i=l,n) имеется хотя бы один отличный от нуля. На рис. 1. 2 .1-1. 2 . 2 изображены два линейно зависимых вектора. Они могут быть расположены на одной прямой, либо на параллельных прямых.
Два вектора, расположенные на одной либо на двух параллельных прямых, называются коллинеарными.
Условие коллинеарности векторов а = λb , где λR. Если три вектора расположены в одной либо в параллельных
плоскостях, то они называются компланарными.
Компланарные векторы линейно зависимы. Необходимое и достаточное условие - компланарности векторов:
с = αа+βb .
В
екторы
xi
(i=l,n)
называются линейно-независимыми, если
равенство нулю их линейной комбинации
(1.2.1) возможно лишь в том случае, когда
коэффициенты ai(i=l,
n)
одновременно равны 0.
Случай двух линейно-независимых векторов представлен на
рис. 1.2.3 (линейная комбинация αа+βb равна нулю лишь при одновременном обращении в ноль α и β).
Пример 1.2.2. Векторы а,b,с некомпланарны (линейно независимы). Доказать, что векторы m=a+2b-c, п=За-b+с и р=а+5b-Зс компланарны и найти их линейную зависимость.
Приравняем к нулю линейную комбинацию векторов т,п,р (αт+ βn+γk = 0) и подставим в равенство разложения векторов т,п,р по векторам а, b,с.
α(a+ 2b- c)+β(3a- b+ c)+γ(-a+5b-3c)=(α+3β - γ)a+(2 α - β+5 γ)b+(- α+ β-3 γ)c=0
Равенство нулю линейной комбинации векторов а,b,с возможно лишь в том случае, когда коэффициенты линейной комбинации равны нулю. Из этого условия получаем систему линейных алгебраических уравнений, которую решим методом Гаусса (пример 1.1.11).
К
оэффициенты
равной нулю линейной комбинации векторов
т,п,р могут
быть отличны от нуля, следовательно
векторы т,п,р
линейно зависимы (компланарны). Подставляя
α, β,
γ
в равенствo
αт+βп+γp=0
и сокращая
на С, получим -2т+
n+k = 0 .
С понятием линейной независимости векторов тесно связано такое фундаментальное понятие как базис.
Базисом на плоскости Q называется любая упорядоченная пара неколлинеарных векторов, параллельныx плоскости Q. Любой вектор с,
параллельный плоскости Q, можно представить в виде с= αа+ βb.
Базисом в трехмерном пространстве называется любая упорядоченная тройка некомпланарных (линейно-независимых) векторов. Если а,b,с- базис в пространстве, то любой вектор d пространства можно единственным образом разложить по этому базису по формуле:
d= αа+ βb+γc.
Декартовым базисом на плоскости (рмс 1.2.4) называются два единичных, взаимно-перпендикулярных вектора i и j (| i| = |j| =1, ij ), совпадающих с положительным направлением осей ОХ и ОУ соответственно.
рис.1.2.4 рис.1.2.5
Любой вектор плоскости а может быть единственным образом представлен в виде a=ax i+ay j , где числа аx и аy называются координатами вектора а .
Декартовым базисом в пространстве (рис.1.2.5.) называются три
единичных взаимноперпендикулярных вектора i,j,k, совпадающих с положительным направлением осей OX,OY и OZ соответственно. Любой
вектор а может быть единственным образом представлен в виде
a=ax i+ay+az k , где числа аx , аy , аz называются координатами вектора а. Если вектор a=АВ задается координатами начальной точки A(xa , ya, za ) и конечной B(xb, yb, zb ), то его координаты имеют вид:
a=(xb-xa, yb-ya, zb-za ).
Два вектора а и b равны в том и только в том случае, когда координаты их равны, т.е. ax=bx, ay=by, az=bz.
