
- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
9.4.2. Повторные независимые испытания. Формула Бернулли
Рассмотрим случай многократного повторения одного и того же испытания или случайного эксперимента. Результат каждого испытания будем считать не зависящим от того, какой результат наступил в предыдущих испытаниях. В качестве результатов или элементарных исходов каждого отдельного испытания будем различать лишь две возможности:
1) появление некоторого события А;
2) появление события , (противоположного события, являющегося дополнением А).
Пусть вероятность P(A) появления события А постоянна и равна p (0.p1). Вероятность P( ) события обозначим через q: P( ) = 1– p=q.
Примерами таких испытаний могут быть:
1) подбрасывание монеты: А – выпадение герба; – выпадение цифры.
P(A) = P( ) = 0,5.
2) бросание игральной кости: А – выпадение количества очков, равного пяти, выпадение любого количества очков кроме пяти.
P(A) =1/6, P( ) =5/6.
3) извлечение наудачу из урны, содержащей 7 белых и 3 черных шара, одного шара (с возвращением): А – извлечение белого шара, – извлечение черного шара
P(A) = 0,7; P( ) = 0,3
Пусть
произведено n
испытаний, которые мы будем рассматривать
как один сложный случайный эксперимент.
Составим таблицу из n
клеток, расположенных в ряд, пронумеруем
клетки, и результат каждого испытания
будем отмечать так: если в i-м
испытании событие А
произошло, то в i-ю
клетку ставим цифру 1, если событие А
не произошло (произошло событие
),
в i-ю
клетку ставим 0.
Если, например, проведено 5 испытаний, и событие А произошло лишь во 2 -м и 5-м испытаниях, то результат можно записать такой последовательностью нулей и единиц: 0; 1; 0; 0; 1.
Каждому возможному результату n испытаний будет соответствовать последовательность n цифр 1 или 0, чередующихся в том порядке, в котором появляются события A и в n испытаниях, например:
1; 1; 0; 1; 0; 1; 0; 0; ... 0; 1; 1; 0
n цифр
Всего
таких последовательностей можно
составить
(это читатель может доказать сам).
Так как испытания независимы, то вероятность P каждого такого результата определяется путем перемножения вероятностей событий A и в соответствующих испытаниях. Так, например, для написанного выше результата найдем
P = ppqpqpqq...qppq
Если в написанной нами последовательности единица встречается х раз (это значит, что нуль встречается n – x раз), то вероятность соответствующего результата будет pnqn-x независимо от того, в каком порядке чередуются эти x единиц и n–x нулей.
Все
события, заключающиеся в том, что в n
испытаниях событие A
произошло x
раз, а событие
произошло n-x
раз, являются несовместными. Поэтому
для вычисления вероятности объединения
этих событий (или суммы этих событий),
нужно сложить вероятности всех этих
событий, каждая из которых равна pnqn-x
.
Всего таких событий можно насчитать
столько, сколько можно образовать
различных последовательностей длины
n,
содержащих x
цифр "1" и n–x
цифр "0". Таких последовательностей
получается столько, сколькими способами
можно разместить x
цифр "1" (или n – x
цифр "0") на n
местах, то есть число этих последовательностей
равно
Отсюда получается формула Бернулли:
Pn(x)
=
(9.4.4)
По формуле Бернулли рассчитывается вероятность появления события A "x" раз в n повторных независимых испытаниях, где p – вероятность появления события A в одном испытании, q - вероятность появления события в одном испытании.
Сформулированные условия проведения испытаний иногда называются "схемой повторных независимых испытаний" или "схемой Бернулли".
Число x появления события A в n повторных независимых испытаниях называется частотой.
Пример. Из урны, содержащей 2 белых и 6 черных шаров, наудачу выбирается с возвращением 5 раз подряд один шар. Подсчитать вероятность того, что 4 раза появится белый шар.
В приведенных выше обозначениях n=8; p=1/4; q=3/4; x=5. Искомую вероятность вычисляем по формуле Бернулли:
По формуле Бернулли можно подсчитать вероятности всех возможных частот: x=0,1,2,3,4,5.
Заметим, что если в этой задаче считать, что белых шаров было 20000, а черных 60000, то очевидно p и q останутся неизменными. Однако в этой ситуации можно пренебречь возвращением извлеченного шара после каждой выборки (при не слишком больших значениях x) и считать вероятности всех частот: x=0,1,2,... по формуле Бернулли.
Формула Бернулли при заданных числах p и n позволяет рассчитывать вероятность любой частоты x (0 x n). Возникает естественный вопрос, какой частоте будет соответствовать наибольшая вероятность?
Предположим, что такая частота существует, и попытаемся ее определить из условия, что вероятность этой частоты не меньше вероятности "предыдущей" и "последующей" частот:
Pn(x) Pn (x – 1); Pn(x) Pn (x+1) (9.4.5)
Первое неравенство (9.4.5) представляется в виде:
,
что
эквивалентно
или
.
Отсюда следует:
Решая второе неравенство (9.4.5), получим
Таким образом, частота, имеющая наибольшую вероятность (наивероятнейшая частота), определяется двойным неравенством
Если np + p – целое число (тогда и np – q – целое число), то две частоты: x=np – q и x=np + p обладают наибольшей вероятностью.