- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
Случайным (стохастическим) экспериментом или испытанием называется осуществление какого-либо комплекса условий, который можно практически или мысленно воспроизвести сколь угодно большое число раз.
Примеры случайного эксперимента: подбрасывание монеты, извлечение одной карты из перетасованной колоды.
Явления, происходящие при реализации этого комплекса условий, то есть в результате случайного эксперимента, называются элементарными исходами. Считается, что при проведении случайного эксперимента реализуется только один из возможных элементарных исходов.
Если монету подбросить один раз, то элементарными исходами можно считать выпадение герба (Г) или цифры (Ц).
Если случайным экспериментом считать троекратное подбрасывание монеты, то элементарными исходами можно считать следующие:
ГГГ, ГГЦ, ГЦГ, ЦГГ, ГЦЦ, ЦГЦ, ЦЦГ, ЦЦЦ.
Множество всех элементарных исходов случайного эксперимента называется пространством элементарных исходов. Будем обозначать пространство элементарных исходов буквой (омега большая) i-й элементарный исход будем обозначатьi ( – омега малая).
Если пространство элементарных исходов содержит n элементарных исходов, то
=(1, 2 ,..., n).
Для троекратного подбрасывания монеты,
=(ГГГ, ГГЦ, ...ЦЦЦ).
Если случайный эксперимент – подбрасывание игральной кости, то =(1,2,3,4,5,6).
Если конечно или счетно, то случайным событием или просто событием называется любое подмножество .
Множество называется счетным, если между ним и множеством N натуральных чисел можно установить взаимно-однозначное соответствие.
Пример счетного множества: множество возможных значений времени прилета инопланетян на Землю, если время отсчитывать с настоящего момента и исчислять с точностью до секунды.
Примеры несчетных множеств: множество точек на заданном отрезке, множество чисел x, удовлетворяющих неравенству 1< x 2.
В случае несчетного множества будем называть событиями только подмножества, удовлетворяющие некоторому условию (об этом будет сказано позже).
Приведем примеры событий. Пусть бросается игральная кость, и элементарным исходом считается выпавшее число очков: =(1,2,3,4,5,6). A — событие, заключающееся в том, что выпало четное число очков: А=(2,4,6); B — событие, заключающееся в том, что выпало число очков, не меньшее 3-х: B=(3,4,5,6).
Говорят, что те исходы, из которых состоит событие А, благоприятствуют событию А.
С
обытия
удобно изображать в виде рисунка, который
называется диаграммой
Венна. На рисунке 9.2.1
пространство элементарных исходов
изображено в виде прямоугольника, а
множество элементарных исходов,
благоприятствующих событию A,
заключено в эллипс. Сами исходы на
диаграмме Венна не изображаются, а
информация о соотношении между их
множествами содержится в расположении
границ соответствующих областей.
С
уммой
(объединением) двух
событий А
и B
(обозначается
)
называется событие, состоящее из всех
элементарных исходов, принадлежащих
по крайней мере одному из событий А
или B.
Объединение событий А
и В
изображено на рисунке 9.2.2
в виде заштрихованной области.
Приведем пример объединения событий. Пусть два стрелка стреляют в мишень одновременно, и событие А состоит в том, что в мишень попадает 1-й стрелок, а событие B – в том, что в мишень попадает 2-й. Событие означает, что мишень поражена, или, иначе, что в мишень попал хотя бы один из стрелков.
Произведением
(пересечением)
событий А
и B
называется событие, состоящее из всех
тех элементарных исходов, которые
принадлежат и А
и B. На
рисунке 9.2.3
пересечение событий А
и B
изображено в виде
заштрихованной области. В условиях
приведенного выше примера событие
заключается в том, что в мишень попали
оба стрелка.
Разностью А\B или А–B событий А и B называется событие, состоящее из всех исходов события А, не благоприятствующих событию B. Диаграмма Венна разности событий А и B изображена на рисунке 9.2.4.
В условиях рассмотренного выше примера событие А\B заключается в том, что первый стрелок попал в мишень, а второй промахнулся.
Событие называется достоверным (оно обязательно происходит в результате случайного эксперимента).
Пустое
множество
называется невозможным
событием. Событие
=\A
называется противоположным
событию А
или дополнением
события А.
События А и B называются несовместными, если нет исходов, принадлежащих и А и B, то есть = . На рисунке 9.2.5 изображены несовместные события А и B.
Событие В будем называть следствием события А, если все исходы события А благоприятствуют событию В. То, что из А следует В записывается символом АВ и изображается на диаграмме Венна так, как это показано на рисунке 9.2.6.
Н
епосредственно
из введенных определений следуют
равенства:
;
A
=;
;
.
Два последних равенства называются формулами Де'Моргана.
Контрольные вопросы:
I. В инвестиционном портфеле собраны акции 5-ти различных корпораций (5ти видов). Событие А состоит в том, что акции 1-го вида подорожали. Событие В состоит в том, что акции всех 5ти видов подорожали.
Опишите
события 1) АВ;
2) АВ;
3) А\В;
4) А\(АВ);
5) А
II. На предстоящих выборах губернатором Н-ской области может быть избран представитель партии “левых”, представитель партии “правых”, представитель партии “зелёных” или не избран никто. Событие А состоит в том, что будет избран представитель партии “левых”. Событие В состоит в том, что будет избран представитель партии “правых” или представитель партии “зелёных”.
Опишите
события 1) АВ;
2) АВ;
3)
:
4)
;
5)
III. Инвестор собирается вложить капитал в обыкновенные акции. Ему предложены на выбор акции корпораций С1, С2, С3, С4. Инвестор может составить портфель из акций всех четырёх корпораций, может выбрать акции одной, двух или трёх корпораций и может вообще отказаться от предложенных акций. Наличие в портфеле тех или иных акций определяет исход сделки. Событие А состоит в том, что в акционерном портфеле оказываются акции С1, или С2, или и те и другие. Событие В состоит в том, что в портфеле нет ни акций С2, ни акций С3.
а) Опишите события 1) ; 2) ; 3) А ; 4) АВ; 5) А\
б) Подсчитайте число исходов в каждом из приведенных выше событий.
Ответы на контрольные вопросы:
1) А; 2) В; 3) акции 1-го вида подорожали, а какие-то из акций либо подешевели, либо остались в прежней цене; 4) А\В; 5) .
1) губернатор будет избран; 2) ; 3) если губернатор будет избран, то он не будет “левым”; 4) губернатор не будет избран 5) если губернатор будет избран, то он будет “левым”.
III 1) если акции куплены, то среди них не будет ни акций С1, ни акций С2. Число исходов — 4. Для решения этой задачи изобразим выбор инвестора в виде последовательности из 4-х цифр. Первая цифра — 0, если акции С1 не куплены и — 1, если акции С1 куплены. Вторая цифра — 0, если акции С2 не куплены, и т. д. Очевидно, что у инвестора всего 16 возможностей выбора. Событие состоит в том, что первые две цифры в такой последовательности – нули. Каждая из двух последних цифр может быть нулём или единицей, следовательно, возможно 4 исхода.
2) акции будут куплены и среди них будут либо акции С2, либо акции С3, либо и те и другие. Число исходов — 12. Это следует из того, что в описанной выше последовательности хотя бы одна из двух цифр, занимающих второе и третье место, должна быть единицей, то есть, возможны следующие комбинации этих цифр: 10, 01, 11. Каждая из этих трёх комбинаций может встретиться с четырьмя возможными комбинациями нулей и единиц, стоящих на первом и четвёртом местах.
3) из всех 16-ти исходов сюда не входят лишь два исхода, изображаемые последовательностями, начинающимися с цифр 000. Это значит, что если акции будут куплены, то не может быть ситуации, при которой в портфель не войдут ни акции С1, ни акции С2 ни акции С3.
4) акции куплены и возможны только два варианта состава портфеля: только акции С1 или акции С1 и С4. Это значит, что последовательность цифр должна начинаться с тройки 100.
5) А\ = АВ. В справедливости этого равенства убедитесь, построив диаграмму Венна. Ответ здесь тот же, что и в пункте 4).
