- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
Выражение
называется комплексной формой ряда
Фурье функции f(x), если
определяется равенством
,
где
Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:
(n=1,2,
. . .)
Задача о колебании струны
Пусть в состоянии равновесия натянута струна длиной равной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.
При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению
(6.3.1)
где а - положительное число.
Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (6.3.1) при граничных:
(6.3.2)
и начальных условиях:
(6.3.3)
Сначала
будем искать решения уравнения (6.3.1),
удовлетворяющие граничным условиям
(6.3.2). Нетрудно увидеть, что u(x,t)
0
является решением уравнения (6.3.1),
удовлетворяющие граничным условиям
(6.3.2). Будем искать решения, не равные
тождественно 0, представимые в виде
произведения
u(x,t)=X(x)T(t), (6.3.4)
где
,
.
Подстановка выражения (6.3.4) в уравнение (6.3.1) дает:
Из этого наша задача сводится к отысканию решений уравнений:
Используя
это условие X(0)=0, X(l)=0, докажем, что
отрицательное число, разобрав все
случаи.
a) Пусть
Тогда
X”=0
и его общее решение запишется так:
откуда
и
,что
невозможно, так как мы рассматриваем
решения, не обращающиеся тождественно
в нуль.
б)
Пусть
.
Тогда решив уравнение
получим
,
и, подчинив, найдем, что
в)
Если
то
Уравнения имеют корни:
получим:
где
- произвольные постоянные. Из начального
условия найдем:
откуда
,
т. е.
(n=1,2,...)
(n=1,2,...).
Учитывая это, можно записать:
(n=1,2,...).
и, следовательно
,
(n=1,2,...),
но так как A и B разные для различных значений n то имеем
,
(n=1,2,...),
где,
и
произвольные постоянные, которые
попытаемся определить таким образом,
чтобы ряд удовлетворял уравнению
(6.3.1), граничным условиям (6.3.2) и начальным
условиям (6.3.3).
Итак,
подчиним функцию u(x,t) начальным условиям,
т. е. подберем
и
так, чтобы выполнялись условия
Эти
равенства являются соответственно
разложениями функций
и
на отрезки [0, l] в ряд Фурье по синусам.
( Это значит, что коэффициенты будут
вычисляться как для нечетной функции).
Таким образом, решение о колебании
струны с заданными граничными и
начальными условиями задается формулой
где,
(n=1,2,...)
Тема 6.4. Интеграл Фурье
Достаточные условия представимости функции в интеграл Фурье.
Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:
1) абсолютной
интегрируемости на интервале
(т.е.
интеграл сходится)
2) на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой.
3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x).
Интегралом Фурье функции f(x) называется интеграл вида:
,
где,
,
.
