- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
5.1.1. Дифференциальные уравнения с разделяющимися переменными
Если в уравнении
y = f(x,y). (5.1.3)
f(x,y) = f1(x)f2(y), то такое уравнение называется уравнением с разделяющимися переменными. Его общий вид:
.
Предполагая, что f2(y) 0, преобразуем последнее уравнение:
.
В обеих частях полученного уравнения стоят дифференциалы некоторых функций аргумента х. Из равенства дифференциалов этих функций следует, что сами функции отличаются одна от другой на константу. Применим изложенный метод к задаче об эффективности рекламы.
Пусть торговой фирмой реализуется некоторая продукция, о которой в момент времени t = 0 из рекламы получили информацию x0 человек из общего числа N потенциальных покупателей. Далее эта информация распространяется посредством общения людей, и в момент времени t > 0 число знающих о продукции людей равно x(t). Сделаем предположение, что скорость роста числа знающих о продукции пропорциональна как числу осведомлённых в данный момент покупателей, так и числу неосведомленных покупателей. Это приводит к дифференциальному уравнению:
.
Здесь k – положительный коэффициент пропорциональности. Из уравнения получаем равенство дифференциалов двух функций аргумента t:
.
Интегрируя левую и правую части, находим общее решение дифференциального уравнения:
.
В общее решение входит неопределенная константа С. Полагая NC = D, получим равенство:
x/(N – x) = eNkt + D,
из которого определим функцию x(t):
.
Здесь E = e–D. Такого вида функция называется логистической, а её график – логистической кривой.
Если теперь учесть, что х(0) = х0 и положить х0 = N/, где > 0, то можно найти значение константы Е. Логистичеcкая функция примет вид:
.
С помощью логистической функции описываются многие экономические, социальные, технологические и биологические процессы, например, постоянный рост продаж, распространение слухов, распространение технических новшеств, рост популяции определенного вида животных и др.
5.1.2. Линейные дифференциальные уравнения
Линейным дифференциальным уравнением первого порядка называется уравнение
a0(x)y + a1(x)y = B(x). (5.1.4)
При a0 0 его можно представить в виде:
y + a(x)y = b(x), (5.1.5)
где a(x) = a1(x)/a0(x) и b(x) = B(x)/a0(x).
Если правые части (5.1.4) и (5.1.5) равны нулю, то эти уравнения называются однородными, в противном случае – неоднородными.
Если в уравнении (5.1.4) a0(x) = a0 и a1(x) = a1, то есть эти функции являются константами, то уравнение (5.1.4) называется линейным дифференциальным уравнением первого порядка с постоянными коэффициентами.
Рассмотрим однородное уравнение
y + ay = 0. (5.1.6)
Перепишем
его в виде:
или
.
Последнюю
формулу можно рассматривать как равенство
дифференциалов функций одного и того
же аргумента
x.
Интегрируя это равенство, получаем lny
=
–ax
+ C,
или y = e–ax + C,
где C
‑ произвольная константа. Если теперь
ввести обозначение eC = A,
то можно представить так называемое
общее
решение
уравнения (5.1.6) в виде:
y = Ae–ax. (5.1.7)
Это решение зависит от неопределенной константы A, придавая которой различные значения, можно получить все множество интегральных кривых уравнения (5.1.6). Если мы хотим найти интегральную кривую, проходящую через точку (x1, y1), то нужно подставить координаты точки в формулу (5.1.7) и определить значение константы A. С этим значением константы A формула (5.1.7) будет определять лишь одну интегральную кривую или так называемое частное решение уравнения (5.1.6).
Как правило, задача ставится так: найти решение уравнения (5.1.6) при условии
y(0) = y0. (5.1.8)
Последняя формула называется начальным условием для уравнения (5.1.6).
Дифференциальное уравнение (5.1.6) при начальном условии (5.1.8) имеет единственное решение, которое определяется формулой
y(x) = y0e–ax. (5.1.9)
Заметим, что для задания начального условия, вообще говоря, не обязательно выбирать значение аргумента x, равное нулю. Как сказано выше, выделить единственное решение из множества, задаваемого формулой (5.1.7) (то есть определить константу А), можно с помощью любого соотношения y(x1) = y1, считая его начальным условием.
Если в уравнении (5.1.6) a = 0, то интегрирование приводит к решению y(x) = C, то есть к константе, которая при начальном условии (5.1.8) равна y0. Таким образом решение y(x) сохраняет начальное значение y0 при изменении x.
Рассмотрим теперь случай неоднородного дифференциального уравнения первого порядка. Пусть дано уравнение
y + ay = b, ( b = cost ) (5.1.10)
с начальным условием y(0) = y0.
Введем
новую неизвестную
(считаем, что a
0). Теперь уравнение (5.1.10) примет вид
или z
+ az
= 0.
Как было показано выше, решением
последнего уравнения является функция
z = z0e–ax,
где
.
Возвращаясь к изначальной неизвестной,
получаем решение уравнения (5.1.10) при
заданном начальном условии:
. (5.1.11)
Если в уравнении (5.1.10) a = 0, то его решением при заданном начальном условии будет функция y(x) = bx + y0.
Заметим, что решение (5.1.11) состоит из двух частей: yh = Ae–ax ‑ решения однородного уравнения y + ay = 0 и y0(x) = b / a ‑ решения, которое назовем равновесным и которое получается, если в уравнении (5.1.10) положить y = 0. Такое представление позволяет рассматривать решение (5.1.11) уравнения (5.1.10) как сумму равновесного или фиксированного значения ye и отклонения или девиации yh траектории y(x) от равновесного значения. Это отклонение возрастает экспоненциально с ростом x при a < 0 и стремится к нулю при a > 0. В первом случае (a < 0) решение называется неустойчивым, а во втором – устойчивым (асимптотически устойчивым).
