Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЫШКА - Теоретическая часть.doc
Скачиваний:
9
Добавлен:
01.05.2025
Размер:
8.19 Mб
Скачать

Тема 4.2.Методы интегрирования

4.2.1. Замена переменной в неопределенном интеграле

Если функция f(x) непрерывна, а функция (t) имеет непрерывную производную (t), то имеет место формула

 f((t))(tdt =  f(x) dx, где x = (t).

Можно привести примеры вычисления интеграла с помощью перехода от левой части к правой в этой формуле, а можно привести примеры обратного перехода.

Примеры. 1. I =  cos(t3tdt. Пусть t3 = x, тогда dx = 3t2dt или t2dt = dx/3.

.

2. . Пусть ln t = x, тогда dx = dt/t.

3. . Пусть x = cos t, тогда dx = - sint dt, и

.

4. . Пусть x = sin t, тогда dx = cos dt, и

.

4.2.2. Формула интегрирования по частям

Пусть u(x) и v(x) — дифференцируемые на некотором промежутке функции. Тогда

(uv) = uv + vu

Отсюда следует

 (uv)dx =  (uv + vu )dx  uv dx +  vu dx

или

uv dx = uv –  uv dx .

Отсюда следует формула, которая называется формулой интегрирования по частям:

 u(x)dv(x) = u(x) v(x) –  v(x)du(x)

Приведем примеры применения формулы интегрирования по частям.

Примеры. 1. I =  x cosx dx. Пусть u = x; dv = cosx dx, тогда du = dx; v = sinx. Отсюда по формуле интегрирования по частям получается:

I = x sinx –  sinx dx = x sinx + cosx + C.

2. I =  (x2 – 3x + 2e5xdx. Пусть x2 – 3x + 2 = u; e5xdx = dv. Тогда du = (2x – 3) dx; .

.

К последнему интегралу применим метод интегрирования по частям, полагая 2x - 3 = u; e5xdx = dv. Отсюда следует: du = 2dx; , и окончательно получаем:

.

3. ;

;

.

В заключение покажем метод вычисления неопределенного интеграла, стоящего в приведенной выше таблице под номером 12:

.

Представим дробь в виде суммы двух дробей: и , и попытаемся найти неизвестные величины параметров A и B. Из равенства получим систему уравнений

с решением . Отсюда следует:

.

Полученный интеграл в обиходе обычно называют “высоким логарифмом”. Метод, которым он был найден, называется методом “неопределенных коэффициентов”. Этот метод применяется при вычислении интегралов от дробей с числителем и знаменателем в виде многочленов.

      1. Интегрированне рациональной дроби

Рациональной дробью R(x) называется дробь, числителем и знаменателем которой являются многочлены, т. Е. всякая дробь вида:

Если степень многочлена в числителе больше или равна степени многочлена в знаменателе (n≥m), то дробь называется неправильной. Если степень многочлена в числителе меньше степени многочлена в знаменателе (n≤m), то дробь называется правильной.

Всякую неправильную рациональную дробь можно представить в виде суммы многочлена (целой части) и правильной рациональной дроби (это представление достигается путем деления числителя на знаменатель по правилу деления многочленов):

где R(x) – многочлен-частное (целая часть) дроби ; Pn(x) – остаток (многочлен степени n < m).

      1. Интегрирование простейших дробей

Простейшей дробью называется правильная рациональная дробь одного из следующих четырех типов:

1)

2) (n≥2);

3)

4) (n≥2).

Здесь А, a, p, q, M, N – действительные числа, а трехчлен не имеет действительных корней, т. е. p2/4-q < 0.

Простейшие дроби первого и второго типов интегрируются непосредственно с помощью основных правил интегрального исчисления:

Интеграл от простейшей дроби третьего типа приводится к табличным интегралам путем выделения в числителе дифференциала знаменателя и приведения знаменателя к сумме квадратов:

Разложение рациональной дроби на простейшие дроби. Всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших рациональных дробей первого – четвертого типов. Для разложения на простейшие дроби необходимо разложить знаменатель Qm(x) на линейные и квадратные множители, для чего надо решить уравнение:

- (5)

Теорема. Правильную рациональную дробь , где , можно единственным образом разложить на сумму простейших дробей:

- (6)

(A1, A2, …, Ak, B1, B2, …, B1, M1, N1, M2, M2, …, Ms, Ns – некоторые действительные числа).

Метод неопределенных коэффициентов. Суть метода неопределенных коэффициентов состоит в следующем. Пусть дано разложение правильной рациональной дроби по формуле (6) на простейшие дроби с неопределенными коэффициентами. Приведем простейшие дроби к общему знаменателю Qm(x) и приравняем многочлен, получившийся в числителе, многочлену Pn(x).

Метод частных значений. При нахождении неопределенных коэффициентов вместо того, чтобы сравнивать коэффициенты при одинаковых степенях х, можно дать переменной х несколько частных значений (по числу неопределенных коэффициентов) и получить таким образом систему уравнений относительно неопределенных коэффициентов. Особенно выгодно применять этот метод в случае, корни знаменателя рациональной дроби просты и действительны. Тогда оказывается удобным последовательно полагать равным каждому из корней знаменателя.

Правило интегрирования рациональных дробей. Для того чтобы проинтегрировать рациональную дробь, необходимо выполнить следующие действия:

    1. если рассматриваемая рациональная дробь - неправильная (k≥m), представить ее в виде суммы многочлена и правильной рациональной дроби:

где n < m; R(x) – многочлен;

    1. если рассматриваемая рациональная дробь - правильная (n < m), представить ее в виде суммы простейших рациональных дробей по формуле (6);

    2. интеграл от рациональной дроби представить в виде суммы интегралов от целой части и от соответствующих простейших дробей и вычислить эти интегралы.