- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
2.1.1. Свойства предела функции. Односторонние пределы
1. Функция не может иметь в одной точке два разных предела.
2.
,
если C —
постоянная функция.
3.
Если существует
и
C
— постоянная функция, то
.
4. Если
существуют
и
,
то существует
,
равный
,
а
также существует
,
равный
.
Если
при этом
,
то существует
,
равный
.
Введем определения так называемых “односторонних пределов”.
Число
B
называется пределом
функции f(x)
в точке a
справа
(это записывается в виде формулы
),
если для любого положительного числа
найдется положительное число ,
такое что из из условия 0 < x – a <
будет следовать B –f(x) < .
Согласно
приведенному определению
.
Отметим, что обыкновенного предела
функция
в точке x = 0
не имеет.
Число
С
называется пределом
функции f(x)
в точке b
слева
(это записывается в виде формулы
),
если для любого положительного числа
найдется положительное число
такое, что из условия 0 < b – x <
будет следовать C – f(x) < .
Очевидно,
что функция
(её график, изображен на рисунке 2.1.3)
имеет два односторонних предела в точке
x = 0:
;
.
Функция f(x) называется непрерывной в точке a справа (непрерывной в точке b слева), если
(
).
Функция
непрерывна справа в точке x=0.
Функция называется непрерывной на замкнутом промежутке [a, b], если она непрерывна на открытом промежутке (a, b), непрерывна справа в точке a и непрерывна слева в точке b.
Достаточно просто можно доказать теорему, связывающую понятия предела функции в точке и односторонних пределов. Мы ограничимся только формулировкой теоремы.
Для
того, чтобы выполнялось равенство
,
необходимо
и достаточно, чтобы одновременно
выполнялись два равенства:
;
В дальнейшем нам понадобятся понятия предела функции в бесконечно удалённых точках. Рассмотрим сначала функцию f(x), определенную на полубесконечном промежутке (х0; ). Число А называется пределом функции f(x) при х, стремящемся к бесконечности:
,
если для любого положительного числа можно найти такое положительное число M (зависящее от ), что для всех чисел х, превосходящих М, выполняется условие:
f(x) – A < .
Пусть теперь функция f(x) определена на полубесконечном промежутке (–; х0). Число А называется пределом функции f(x) при х, стремящемся к минус бесконечности:
,
если для любого положительного числа можно найти такое положительное число M (зависящее от ), что для всех чисел х, меньших, чем – М, выполняется условие:
f(x) – A < .
2.1.2. «Замечательные» пределы. Применение пределов в экономике
Отметим два, так называемых, «замечательных» предела.
1.
.
Геометрический смысл этой формулы
заключается в том, что прямая
является касательной к графику функции
в точке
.
2.
.
Здесь e
— иррациональное число, приблизительно
равное 2,72.
Приведем пример применения понятия предела функции в экономических расчетах. Рассмотрим обыкновенную финансовую сделку: предоставление в долг суммы S0 с условием, что через период времени T будет возвращена сумма ST. Определим величину r относительного роста формулой
. (2.1.1)
Относительный рост можно выразить в процентах, умножив полученное значение r на 100.
Из формулы (2.1.1) легко определить величину ST:
ST = S0(1 + r)
При расчете по долгосрочным кредитам, охватывающим несколько полных лет, используют схему сложных процентов. Она состоит в том, что если за 1-й год сумма S0 возрастает в (1 + r) раз, то за второй год в (1 + r) раз возрастает сумма S1 = S0(1 + r), то есть S2 = S0(1 + r)2. Аналогично получается S3 = S0(1 + r)3. Из приведенных примеров можно вывести общую формулу для вычисления роста суммы за n лет при расчете по схеме сложных процентов:
Sn = S0(1 + r)n.
В
финансовых расчетах применяются схемы,
где начисление сложных процентов
производится несколько раз в году. При
этом оговариваются годовая
ставка
r
и количество
начислений за год
k.
Как правило, начисления производятся
через равные промежутки времени, то
есть длина каждого промежутка Tk
составляет
часть года. Тогда для срока в T
лет (здесь T
не обязательно является целым числом)
сумма ST
рассчитывается по формуле
(2.1.2)
Здесь
— целая часть числа
,
которая совпадает с самим числом, если,
например, T
‑ целое число.
Пусть годовая ставка равна r и производится n начислений в год через равные промежутки времени. Тогда за год сумма S0 наращивается до величины, определяемой формулой
(2.1.3)
В теоретическом анализе и в практике финансовой деятельности часто встречается понятие “непрерывно начисляемый процент”. Чтобы перейти к непрерывно начисляемому проценту, нужно в формулах (2.1.2) и (2.1.3) неограниченно увеличивать соответственно, числа k и n (то есть устремить k и n к бесконечности) и вычислить, к какому пределу будут стремиться функции ST и S1. Применим эту процедуру к формуле (2.1.3):
.
Заметим, что предел в фигурных скобках совпадает со вторым замечательным пределом. Отсюда следует, что при годовой ставке r при непрерывно начисляемом проценте сумма S0 за 1 год наращивается до величины S1*, которая определяется из формулы
S1* = S0er. (2.1.4)
Пусть теперь сумма S0 предоставляется в долг с начислением процента n раз в год через равные промежутки времени. Обозначим re годовую ставку, при которой в конце года сумма S0 наращивается до величины S1* из формулы (2.1.4). В этом случае будем говорить, что re — это годовая ставка при начислении процента n раз в год, эквивалентная годовому проценту r при непрерывном начислении. Из формулы (2.1.3) получаем
.
Приравнивая правые части последней формулы и формулы (2.1.4), полагая в последней T = 1, можно вывести соотношения между величинами r и re:
,
.
Эти формулы широко используются в финансовых расчётах.
