Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЫШКА - Теоретическая часть.doc
Скачиваний:
9
Добавлен:
01.05.2025
Размер:
8.19 Mб
Скачать

Тема 1.9. Комплексные числа………………………………………………….…61

      1. Понятие комплексного числа………………………………………….62

      2. Геометрическая интерпретация комплексного числа………………..63

      3. Модуль комплексного числа…………………………………………..63

      4. Сложение и умножение комплексных чисел…………………………64

      5. Вычитание и деление комплексных чисел……………………………65

      6. Тригонометрическая форма комплексного числа……………………66

      7. Свойства модуля и аргумента комплексного числа………………….67

      8. Возведение в степень и извлечение корня……………………………69

      9. Квадратное уравнение с комплексным неизвестным………………..70

Раздел 2. Дифференциальное исчисление функции одной переменной………72

Тема 2.1. Понятие о функции одной переменной. Предел и непрерывность

Функции…………………………………………………………………72

      1. Свойства предела функции. Односторонние пределы………………75

      2. «Замечательные» пределы. Применение пределов в экономике……77

Тема 2.2. Производная функции………………………………………………….79

Тема 2.3. Дифференциал функции……………………………………………….81

Тема 2.4. Производные высших порядков………………………………………83

Тема 2.5. Исследование функции. Формула Лагранжа………………………....84

      1. Необходимые и достаточные условия экстремума функции………..85

      2. Выпуклость, вогнутость и точки перегиба функции………………...86

      3. Функции полезности…………………………………………………...88

Раздел 3. Функция нескольких переменных…………………………………….89

Тема 3.1. Основные понятия функции нескольких переменных………………89

Тема 3.2. Частные производные………………………………………………….91

Тема 3.3. Дифференциал функции двух переменных…………………………..93

Тема 3.4. Производная по направлению………………………………………....95

Тема 3.5. Экстремум функции двух переменных…………………………….....98

Раздел 4. Интегральное исчисление функции одной переменной……………100

Тема 4.1. Первообразная. Неопределенный интеграл…………………………100

Тема 4.2. Методы интегрирования……………………………………………...102 4.2.1. Замена переменной в неопределенном интеграле…………………..102

      1. Формула интегрирования по частям………………………………...103

      2. Интегрирование рациональной дроби………………………………105

      3. Интегрирование простейших дробей………………………………..106

      4. Интегрирование выражений содержащих тригонометрические

Функции……………………………………………………………….108

      1. Интегрирование иррациональных выражений……………………..109

Тема 4.3. Определенный интеграл……………………………………………...111 4.3.1. Свойства и геометрический смысл определенного интеграла…….111

      1. Определенный интеграл как функция верхнего предела. Формула

Ньютона-Лейбница…………………………………………………....114

      1. Несобственные интегралы с бесконечными пределами……………117

      2. Вычисление площадей плоских фигур………………………………118

      3. Определение длины кривой. Дифференциал кривой………………119

Раздел 5. Дифференциальные уравнения………………………………………122

Тема 5.1. Дифференциальные уравнения первого порядка…………………...122

      1. Дифференциальные уравнения с разделяющимися переменными..123

      2. Линейные дифференциальные уравнения…………………………..125

      3. Динамическая модель устойчивости рынка Вальраса……………...127

      4. Линейные дифференциальные уравнения первого порядка с

переменными коэффициентами……………………………………..128

Раздел 6. Ряды и интеграл Фурье………………………………………….……132

Тема 6.1. Числовые ряды……………………………………………………...…132

      1. Условие сходимости положительного числового ряда………….…132

      2. Обобщенные гармонические ряды или ряды Дирихле……………..133

Тема 6.2. Тригонометрический ряд. Ряд Фурье…………………………….….135

      1. Достаточные признаки разложимости функции в ряд Фурье……...136

      2. Ряды Фурье для четных и нечетных функций………………………137

      3. Ряд Фурье по любой ортогональной системе функций…………….138

Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны……..139

Тема 6.4. Интеграл Фурье………………………………………………………..142

      1. Интеграл Фурье для четной и нечетной функции…………………..143

      2. Комплексная форма интеграла Фурье……………………………….144

      3. Формулы дискретного преобразования Фурье………………….…..144

Раздел 7. Представление функции интегралом Фурье…………………….…..145

Тема 7.1. Проверка условий представимости……………………………….….145

      1. Представление функции интегралом Фурье………………………...145

      2. Интеграл Фурье в комплексной форме……………………………...146

Тема 7.2. Представление функции полиномом Лежандра…………………….147

      1. Основные сведения…………………………………………………...147

      2. Преобразование функции…………………………………………….147

      3. Вычисление коэффициентов ряда…………………………………...148

Раздел 8. Дискретные преобразования Фурье………………………………....152

Тема 8.1. Прямое преобразование……………………………………………...152

Тема 8.2. Обратное преобразование…………………………………………....154

Раздел 9. Элементы теории вероятностей……………………………………..156

Тема 9.1. Комбинаторные формулы……………………………………………156

Тема 9.2. Случайный эксперимент, элементарные исходы, события.

Диаграммы Венна…………………………………………………….160

Тема 9.3. Вероятностное пространство. Случай конечного или счетного

числа исходов…………………………………………………………164

      1. Классическое определение вероятности……………………………165

      2. Статистическое определение вероятности………………………….166

      3. Непрерывное вероятностное пространство…………………….…...168

      4. Геометрическая вероятность…………………………………………168

      5. Формулы сложения вероятностей…………………………………...169

      6. Условная вероятность. Независимые события. Умножение

вероятностей…………………………………………………………..170

Тема 9.4. Формула полной вероятности…………………………………….….172

      1. Формула Байеса………………………………………………………174

      2. Повторные независимые испытания. Формула Бернулли…………175

Тема 9.5. Законы распределения случайной величины……………………….178

      1. Биноминальное распределение случайной величины……………...178

      2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона………………………………...181

      3. Локальная и интегральная формулы Лапласа………………………182

Тема 9.6. Дискретные случайные величины…………………………………...184

      1. Зависимость и независимость двух случайных величин…………..185

      2. Математическое ожидание случайной величины…………………..188

      3. Дисперсия случайной величины……………………………………..191

Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случайной величины………………………………...193

      1. Математическое ожидание случайной величины…………………..198

      2. Дисперсия случайной величины…………………………………….199

      3. Нормальное распределение………………………………………….201

Раздел 10. Элементы математической статистики……………………………...203

Тема 10.1. Задачи математической статистики………………………………….203

10.1.1.Выборочный метод. Генеральная совокупность…………………...204

10.1.2.Вариационный ряд……………………………………………………205

10.1.3.Точечные оценки параметров генеральной совокупности………...206

Тема 10.2. Интервальные оценки………………………………………………...210

10.2.1.Понятие интервальной оценки………………………………………210

10.2.2.Доверительный интервал для математического ожидания

нормального распределения при известной дисперсии……………211

10.2.3.Доверительный интервал для математического ожидания

нормального распределения при неизвестной дисперсии…………212

10.2.4.Доверительный интервал дисперсии нормального распределения.214

Тема 10.3. Задачи статистической проверки гипотез…………………………...215

10.3.1.Основные понятия и статистическая проверка гипотез……………215

10.3.2.Проверка статистической гипотезы о математическом ожидании

нормального распределения при известной дисперсии……………219

10.3.3.Проверка гипотезы о равенстве дисперсий…………………………221

10.3.4.Проверка статистической значимости выборочного

коэффициента корреляции…………………………………………...222

Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат…………………..223