- •Часть 1
- •Тема 1.9. Комплексные числа………………………………………………….…61
- •Список использованной и рекомендуемой литературы:
- •Раздел 1. Элементы теории множеств, векторной алгебры и аналитической геометрии. Вещественные числа
- •Тема 1.1. Элементы линейной алгебры
- •Матрицы и определители. Линейные операции над матрицами
- •1.1.2. Ранг матрицы
- •1.1.3. Методы решения систем линейных алгебраических уравнений
- •Для решения произвольных слау применяется метод Гаусса. Сущность метода состоит в том, что расширенная матрица слау приводится к ступенчатому виду. Метод Гаусса решения систем линейных уравнений.
- •Вопросы для самопроверки
- •Тема 1.2. Элементы векторной алгебры
- •1.2.1. Векторы, операции над векторами. Декартов базис
- •1.2.2. Скалярное произведение векторов
- •1.2.3. Векторное произведение векторов
- •1.2.4. Смешанное произведение трех векторов
- •Тема 1.3. Прямая и плоскость
- •1.3.1. Различные виды уравнения плоскости
- •1.3.2. Различные виды уравнения прямой в пространстве
- •1.3.3. Задачи, относящиеся к плоскостям
- •1.3.4. Задачи, относящиеся к прямой в пространстве
- •1.3.5. Взаимное расположение прямой и плоскости
- •1.3.6. Уравнение прямой линии на плоскости
- •Вопросы для самопроверки:
- •Тема 1.4. Преобразование координат на плоскости. Элементарная теория линий второго порядка
- •Вопросы для самопроверки
- •Тема 1.5. Некоторые сведения о линейных векторных пространствах. Собственные числа и собственные векторы
- •1.5.1. Векторные пространства и их преобразования
- •1.5.2. Собственные числа и собственные векторы матрицы линейного преобразования (оператора)
- •Вопросы для самопроверки
- •Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
- •1.6.1. Уравнения центральных поверхностей второго порядка
- •1.6.2. Нецентральные поверхности
- •1.6.3. Плоскости
- •Вопросы для самопроверки
- •Тема 1.7. Множества. Вещественные числа
- •1.7.1. Алгебраические свойства вещественных чисел
- •1.7.2. Отношение порядка На множестве вещественных чисел вводится отношение порядка , т.Е. , которое удовлетворяет следующим аксиомам:
- •1.7.3. Представление (модель) вещественного числа
- •1.7.4. Решение простейших неравенств с модулем
- •1.7.5. Открытые и замкнутые множества
- •1.7.6. Принципы существования предельной точки (Вейерштрасс)
- •Тема 1.8. Элементы теории пределов. Бесконечные функции
- •1.8.1. Определение предела в терминах окресностей
- •1.8.2. Общие свойства конечного предела
- •1.8.3. Бесконечно малые функции и их свойства
- •1.8.4. Представление функции, имеющей конечный предел
- •1.8.5. Свойства функций имеющих конечный предел в точке а
- •1.8.6. Бесконечно большие функции и их свойства
- •1.8.7. Числовые последовательности
- •Предел последовательности
- •1.8.9. Критерии существования предела последовательности
- •Тема 1.9. Комплексные числа
- •1.9.1. Понятие комплексного числа
- •1.9.2. Геометрическая интерпретация комплексного числа
- •1.9.3. Модуль комплексного числа
- •1.9.4. Сложение и умножение комплексных чисел
- •1.9.5. Вычитание и деление комплексных чисел
- •1.9.6. Тригонометрическая форма комплексного числа
- •1.9.7. Свойства модуля и аргумента комплексного числа
- •1.9.8. Возведение в степень и извлечение корня
- •1.9.9. Квадратное уравнение с комплексным неизвестным
- •Раздел 2. Дифференциальное и интегральное исчисление
- •Тема 2.1. Понятия о функции одной переменной. Предел и непрерывность функции
- •2.1.1. Свойства предела функции. Односторонние пределы
- •2.1.2. «Замечательные» пределы. Применение пределов в экономике
- •Тема 2.2. Дифференциальное исчисление функции одной переменной. Производная функции
- •Тема 2.3. Дифференциал функции
- •Тема 2.4. Производные высших порядков
- •Тема 2.5. Исследование функции. Формула Лагранжа
- •2.5.1. Необходимые и достаточные условия экстремума функции
- •2.5.2. Выпуклость, вогнутость и точки перегиба функции
- •2.5.3. Функция полезности
- •Раздел 3. Функция нескольких переменных Тема 3.1. Основные понятия функции нескольких переменных
- •Тема 3.2. Частные производные
- •Тема 3.3. Дифференциал функции двух переменных
- •Тема 3.4. Производная по направлению
- •Тема 3.5. Экстремум функции двух переменных
- •Упражнения
- •Раздел 4. Интегральное исчисление функции одной переменной Тема 4.1.Первообразная. Неопределенный интеграл
- •Тема 4.2.Методы интегрирования
- •4.2.1. Замена переменной в неопределенном интеграле
- •4.2.2. Формула интегрирования по частям
- •Интегрированне рациональной дроби
- •Интегрирование простейших дробей
- •Интегрирование выражений содержащих тригонометрические функции
- •4.2.6. Интегрирование иррациональных выражений
- •Тема 4.3. Определенный интеграл
- •4.3.1. Свойства и геометрический смысл определенного интеграла
- •4.3.2. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница
- •4.3.3. Несобственные интегралы с бесконечными пределами
- •Упражнения
- •4.3.4. Вычисление площадей плоских фигур
- •4.3.5. Определение длины кривой. Дифференциал кривой
- •Раздел 5. Обыкновенные дифференциальные уравнения Тема 5.1. Дифференциальные уравнения первого порядка
- •5.1.1. Дифференциальные уравнения с разделяющимися переменными
- •5.1.2. Линейные дифференциальные уравнения
- •5.1.3. Динамическая модель устойчивости рынка Вальраса
- •5.1.4. Линейные дифференциальные уравнения первого порядка с переменными коэффициентами
- •Упражнения
- •Раздел 6. Ряды и интеграл Фурье Основные сведения
- •Тема 6.1. Числовые ряды
- •6.1.1. Условие сходимости положительного числового ряда
- •Тема 6.2. Тригонометрический ряд. Ряд Фурье
- •6.2.1.Достаточные признаки разложимости функции в ряд Фурье
- •6.2.2. Ряды Фурье для четных и нечетных функций
- •6.2.3. Ряд Фурье по любой ортогональной системе функций
- •Тема 6.3. Комплексная форма ряда Фурье. Задача о колебании струны
- •Задача о колебании струны
- •Тема 6.4. Интеграл Фурье
- •6.4.1. Интеграл Фурье для четной и нечетной функции
- •6.4.2. Комплексная форма интеграла Фурье
- •6.4.3. Формулы дискретного преобразования Фурье
- •Раздел 7. Представление функции интегралом Фурье
- •Тема 7.1. Проверка условий представимости
- •7.1.1. Представление функции интегралом Фурье
- •7.1.2. Интеграл Фурье в комплексной форме
- •Тема 7.2. Представление функции полиномом Лежандра
- •7.2.1. Основные сведения
- •7.2.2. Преобразование функции
- •7.2.3. Вычисление коэффициентов ряда
- •Раздел 8. Дискретные преобразования Фурье
- •Тема 8.1. Прямое преобразование
- •Тема 8.2. Обратное преобразование
- •Раздел 9. Элементы теории вероятностей Тема 9.1. Комбинаторные формулы
- •Тема 9.2. Случайный эксперимент, элементарные исходы, события. Диаграммы Венна
- •Тема 9.3. Вероятностное пространство. Случай конечного или счетного числа исходов
- •9.3.1. Классическое определение вероятности
- •9.3.2. Статистическое определение вероятности
- •9.3.3. Непрерывное вероятностное пространство
- •9.3.4. Геометрическая вероятность
- •9.3.5. Формулы сложения вероятностей
- •9.3.6. Условная вероятность. Независимые события. Умножение вероятностей
- •Тема 9.4. Формула полной вероятности
- •9.4.1. Формула Байеса
- •9.4.2. Повторные независимые испытания. Формула Бернулли
- •Тема 9.5. Законы распределения случайной величины
- •9.5.1. Биноминальное распределение случайной величины
- •9.5.2. Асимптотические формулы Бернулли. Случайная величина, распределенная по закону Пуассона
- •9.5.3. Локальная и интегральная формулы Лапласа
- •Тема 9.6. Дискретные случайные величины
- •9.6.1. Зависимость и независимость двух случайных величин
- •9.6.2. Математическое ожидание случайной величины
- •9.6.3. Дисперсия случайной величины
- •Свойства дисперсии:
- •Тема 9.7. Непрерывные случайные величины. Плотность и функция распределения случаной величины
- •9.7.1. Математическое ожидание случайной величины
- •9.7.2. Дисперсия случайной величины
- •9.7.3. Нормальное распределение
- •Раздел 10. Элементы математической статистики Тема 10.1. Задачи математической статистики
- •10.1.1. Выборочный метод. Генеральная совокупность
- •10.1.2. Вариационный ряд
- •10.1.3. Точечные оценки параметров генеральной совокупности
- •Тема 10.2. Интервальные оценки
- •10.2.1. Понятие интервальной оценки
- •10.2.2. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •10.2.3. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •10.2.4. Доверительный интервал дисперсии нормального распределения
- •Тема 10.3. Задачи статистической проверки гипотез
- •10.3.1. Основные понятия и статистическая проверка гипотез
- •10.3.2. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии
- •10.3.3. Проверка гипотезы о равенстве дисперсий
- •10.3.4. Проверка статистической значимости выборочного коэффициента корреляции
- •Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
- •Данные распределения среднемесячной заработной платы:
Тема 1. 6 . Квадратичные формы. Приведение к каноническому виду уравнений линии и поверхности второго порядка
Квадратичной формой от трех переменных x,y,z называется однородный многочлен второй степени относительно этих переменных.
F(x,y,z)= a11x2 + 2a12xу+ а22у2 + 2a13xz+ 2a23yz+a22 z2 (1.6.1)
Если учесть, что а12 =a21, a13=a31, a23=a32 , то F(x,y,z) записывается
в виде
F(x, у, z) = а11х2 + а12ху + а21ух + а22 у2 + a13xz + a31 zx + a23 yz + a32 zy + a22z2 .
н
азывается
матрицей квадратичной формы. Квадратичная
форма имеет канонический вид, если она
содержит члены только с квадратами
переменных, т.е. аij
= 0; i,j = 1,3;
i≠
j . Матрица
(1.6.2) квадратичной формы
(1.6.1) будет иметь диагональный вид, если в трехмерном пространстве перейти к. новому базису, состоящему из собственных векторов (см. тему 1.5) матрицы А, при этом на главной диагонали будут стоять собственные числа матрицы А.
Квадратичная форма в новом базисе будет иметь вид
F(x1, y1, z1)=λ1x12 + λ2 y12 + λ3z12 (1.6.3)
В
случае двух переменных х,
у квадратичная
форма F(x,y)
имеет вид
F(х,у) = а11х2 + 2а12 ху + а22 y2, (1.6.4)
п
ричем
а12
= a21
.
Методы приведения квадратичной формы к каноническому виду применяются при решении задач на приведение к каноническому виду уравнений кривых второго порядка
a11x2 + 2а12 ху + а22 у2 + b1х + b2 y + с = 0
и уравнений поверхностей второго порядка
a11x2 + 2а12 ху + а22 у2 + 2a13 xz+2a23 yz+a22 z2 +b1х + b2 y +b3 z + с = 0
Канонические уравнения основных кривых второго' порядка были рассмотрены в теме 1.4 (1.4.6). Поверхности второго порядка делятся на центральные и нецентральные. Канонические уравнения некоторых поверхностей второго порядка приведены ниже.
1.6.1. Уравнения центральных поверхностей второго порядка
λ
=0-точка
λ =1-эллипс,
λ.=-1-мнимый эллипс.
λ
= 1-однополостный гиперболоид
λ =-1-двуполостный гиперболоид;
λ = 0 эллиптический конус.
1.6.2. Нецентральные поверхности
λ
=l-эллиптический параболоид,
λ =-1 гиперболический параболоид.
2.Цилиндрические поверхности:
λ
=1-
эллиптический цилиндр,
λ=1- гиперболический цилиндр.
-
мнимый
эллиптический цилиндр(уравнению не
удовлетворяет ни одна точка),
-
пара
плоскостей,
г) х2 = 2ру, у2 = 2рх, z2 = 2рх , (1.6.12)
и т.д. параболические цилиндры.
1.6.3. Плоскости
х2 = λа2 , а ≠0, λ=1 пара параллельных плоскостей;
λ=-1 мнимые плоскости (уравнению не удовлетворяет ни одна точка пространства);
λ=0 - пара совпадающих плоскостей.
Пример 1.6.1. Записать каноническое уравнение кривой второго порядка Зх2+4xу - 4х- 8y = 0 (сравните с решением примера 1.4.1 темы 1.4).
Квадратичная форма, содержащаяся среди слагаемых левой части уравнения имеет вид F(x,y)= Зх2+ 4xy , а ее матрица
В
ычислим
собственные числа и собственные векторы
матрицы А (см.
тему 1.5)
П усть собственные векторы Хi(а1(i), а2(i)) i.=1,2, где а1(i), а2(i - координаты. Система (1.5.5) для нахождения собственных векторов имеет вид
(3-λ)a1+2a2=0
2a1-λa2=0 (1.6.14)
Найдем собственные числа λ , решив характеристическое уравнение (1.5.6) .
П
одставим
первое собственное число λ1=4
в систему (1.6.4).
и
соответствующий единичный вектор X10
имеет вид
П
одставим
второе собственное число λ2=-1
в систему (1.6.14):
П
ерейдем
в двумерное пространство R2
к новому базису составленному из
собственных векторов матрицы А
Х10
и Х20.
При этом матрица квадратичной формы
В
в новом базисе будет иметь вид (1.5.3)
г
де
матрица Т составлена из координат
собственных векторов, записанных в
столбцы. Связь между старыми координатами
х, у
(в базисе i,
j )
и новыми координатами x1,
y1
(в новом базисе) реализуется по формуле
квадратичная форма в новом базисе имеет вид (1.6.3) (случай двух переменных) F(x1, y1) = 4x12 - у12 .
З
апишем
равнение кривой второго порядка в новых
координатах, приведем подобные.
Уравнение совпало с уравнением, полученным в примере 1.4.1. темы 1.4 и поэтому дальнейшие преобразования идентичны.
с
опряженная
гипербола с полуосями а=1, b=2.
Пример 1.6.2.Записать каноническое уравнение поверхности второго порядка
11x2 + 4ху + 2y2 - 16xz + 20yz + 5z2 + 6x + l2y -6=0.
Запишем квадратичную форму, входящую в состав левой части уравнения F(x,y,z)=llxг + 4ху+2у2 - 16xz + 20yz + 5z2
С
обственные
числа этой матрицы λ1
= 9, λ2
= l8, λ 3
= -9 и единичные cобст-венные векторы X10
= (2/3, 2/3, 1/3)T,
X20
=(-2/3, 1/3, 2/3)Т,
X30=(1/3,
-2/3, 2/3)Т
найдены в примере 1.5.4 (см. тему 1.5). Связь между координатами x, y,z в старом базисе (i,j,k) и координатами x1,y1,z1 в новом базисе (X10,X20,X30) имеет вид
В
ыше
записанная матрица, как в примере
1.6.1,образована из координат собственных
векторов, записанных в столбцы. Матрица
квадратичной формы В
в новом базисе - диагональная
F
(x,y,z)
=9x12
+18y12
-9z12
Запишем уравнение поверхности второго порядка в новых координатах, приведем подобные члены и выделим полные квадраты
9x12 +18y1 2 - 9z12 + 2(2x1 - 2y1 + z1) + 4(2x1 +y1 -2z1) - б = 0;
9
x12
+ I8y12
- 9z12
+12x1
- бz1
- б = 0;
Перейдем к новым координатам (параллельный перенос):
П
олученное
уравнение является каноническим уравнением
однополо стного гиперболоида (1.6.7) с
параметрами а
=1, b
=√2/2, с=1.
После изучения материала, содержащегося в разделе 1, студент должен выполнить контрольную работу N1.
