Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lk6.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
397.31 Кб
Скачать

Склад газів полум’я

Горючий газ

Окиснювач

Реакції в зоні горіння

Т, К

Пропан-бутан

Кисень повітря

3Н8+3О2→6СО+8Н2

4Н10+4О2→8СО+10Н2

22→2Н2О

2СО+О2→2СО2+h

Хемілюмінесцентна реакція, що зумовлює синьо-фіолетове забарвлення вторинної реакційної зони полум’я

2100

Ацетилен

Кисень повітря

С2Н22→2СО+Н2

22→2Н2О

2СО+О2→2СО2+h

2450

Ацетилен

Оксид азоту(І)

С2Н2+2N2О→2СО+Н2+2N2

22→2Н2О

2СО+О2→2СО2

3200

Найвищу атомізуючу здатність має полум’я С2Н2 – N2O. Сполуки всіх елементів, потенціал збудження яких не перевищує 6,5 еВ, повністю атомізуються. Проте це полум’я має власну емісію і високий ступінь іонізації елементів з потенціалом іонізації <5,0 еВ.

Треба наголосити на тому, що полум’я має власне випромінювання (фон), яке знижує чутливість методу. Фон створюють радикали і молекули, які утворюються під час згоряння вуглеводнів: радикали С2 (смуги Свана), ОН, СН, молекул СО2 та ін.

Для врахування власного випромінювання полум’я застосовують модуляцію світлового потоку або вимірюють аналітичний сигнал у зоні полум’я з мінімальним фоновим випромінюванням.

Емісійна фотометрія полум’я

За схемою визначення методом емісійної фотометрії полум’я досліджуваний розчин у вигляді дрібних краплин аерозолю (розмір краплин до 10 мк) за допомогою пневматичного розпилювача вводять у полум’я, де відбуваються складні фізико-хімічні процеси (рис. 7.1).

Рис. 7.1. Схема процесів у полум’ї після внесення у нього розчину

Частина атомів збуджується і випромінює характеристичне випромінювання, яке відокремлюється від стороннього за допомогою селектора – світлофільтра чи монохроматора – і потрапляє на фотодетектор – фотоелемент чи фотопомножувач. Фотострум, який виникає, підсилюється і реєструється вимірювальним пристроєм. Отже, аналітичним сигналом у емісійній полуменевій фотометрії є величина фотоструму і, яка пов’язана з концентрацією розчину. На рис. 7.2 зображено схему пристрою для емісійної фотометрії полум’я.

Рис. 7.2. Схема приладу для емісійної фотометрії полум’я:

1 – досліджуваний розчин; 2 – розпилювач; 3 – полум’я; 4 – селектор (світлофільтр чи монохроматор); 5 – фотодетектор (фотоелемент чи фотопомножувач); 6 – реєстратор

Концентрація вільних атомів, які випромінюють і детектуються, залежить від багатьох факторів: ефективності розпилювання розчину, температури полум’я, проходження побічних і конкуруючих процесів – утворення хімічних сполук, іонізації атомів та ін.

Ефективність розпилювання можна оцінити середнім діаметром крапель аерозолю рідина-газ, який залежить від типу розпилювача та фізичних властивостей розчину – в’язкості, густини та поверхневого натягу на межі розчин–газ.

Атомізація речовини в полум’ї відбувається внаслідок термічного розпаду молекул. У відновному полум’ї можливе відновлення молекул частинками, які містять вуглець. Атомізація залежить від природи речовини та температури полум’я. Кількісно може бути оцінена ступенем атомізації (а) – відношенням концентрації вільних атомів в одиниці об’єму полум’я до загальної кількості атомів у різних формах (атоми, молекули, іони). В табл.7.3 наведено значення ступеня атомізації для деяких елементів у полум’ї ацетилен–повітря та ацетилен–закис азоту.

Таблиця 7.3

Ступінь атомізації (а) для деяких елементів

Елемент

С2Н2 – повітря

С2Н2 – N2O

Al

610–5

0,13

Ba

1,810–3

0,17

Cu

0,88

0,66

Fe

0,84

0,83

Na

1,04

0,97

Іонізація атомів призводить до зменшення концентрації вільних атомів і є небажаним для аналізу процесом. Ступінь іонізації залежить від природи атома (потенціал іонізації), температури полум’я та концентрації атомів. Вона зростає, наприклад, від Li до Cs та зі зменшенням концентрації розчину. Для усунення іонізації до розчину додають так звані іонізаційні буфери – розчини солей металів, атоми яких добре іонізують у полум’ї і зсувають рівновагу процесу іонізації в бік вільних атомів. Найчастіше таку роль виконують солі літію:

Li → Li+ + e – іонізаційний буфер;

К → К+ + е – визначуваний елемент.

На концентрацію вільних атомів у полум’ї суттєво впливають наявні в розчині проби сторонні іони (матричний вплив). Доведено, наприклад, що емісію лужних і лужноземельних металів зменшують іони алюмінію, титану, цирконію, торію та інші, а також аніони неорганічних кислот – фосфатної, сульфатної, хлоридної (аніонний ефект). Вважають, що матричні компоненти утворюють в полум’ї з визначуваними іонами важколеткі сполуки. Вплив катіонів можна усунути введенням в розчин компонентів, які зв’язують, наприклад, алюміній чи фосфат у термостійкі сполуки і так “вивільнюють” атом лужноземельного металу. Полегшують атомізацію і виконують певною мірою “вивільнюючу” дію комплексанти – ЕДТА, оксихінолін та ін.

Якісний і кількісний аналіз. Основою якісного аналізу в емісійній полуменевій фотометрії є характер випромінювання, тобто розташування лінії чи смуги у спектрі. Інтенсивність випромінювання служить мірою концентрації. Як вже зазначалось, температура полум’я як атомізатора та джерела збудження порівняно невисока, тому в спектрі з’являються лише легкозбуджувані лінії, які називають резонансними. Вони здебільшого дуже інтенсивні, бо відповідають переходам зі значною імовірністю. Кількість таких ліній незначна для кожного елемента, тому спектр досить простий.

Метод емісійної полуменевої фотометрії особливо ефективний для визначення елементів з низькими потенціалами збудження в межах 1,6 – 3,0 еВ. Це лужні та лужноземельні метали.

Таблиця 7.4

Лінії та смуги деяких елементів, за якими їх визначають у полум’ї

Елемент

Атомна лінія, , нм

Смуга, макс

Na

589,0 i 589,6

K

766,5 i 769,9

Li

670,8

Ca

422,7

CaO; CaOH: 554,0; 622,0

Sr

460,7

SrO; SrOH: 610,0; 670,0

За молекулярними спектрами емісії визначають Ca, Sr (смуги СаО, СаОН, SrO, SrOH), деякі РЗЕ та В (смуга ВО2). Ліній іонів елементів І–ІІ груп періодичної таблиці в полум’ї немає. У табл. 7.4 наведено дані стосовно використовуваних у полум’ї та детектованих ліній і смуг.

За апаратурним оформленням і умовами технічної експлуатації метод простий, що дає змогу використовувати його в польових умовах, лабораторіях підприємств тощо.

Метод емісійної фотометрії полум’я – різновид атомної емісійної спектроскопії і до нього можна застосувати залежність між аналітичним сигналом і концентрацією розчину у вигляді уже згаданого вище рівняння Ломакіна–Шайбе

, (7.1)

де І – інтенсивність спектральної лінії в полум’ї або пропорційна їй величина фотоструму, і, мкА; а – стала для конкретних умов аналізу, яка залежить від типу полум’я і властивостей проби; С – концентрація елемента в розчині; b – коефіцієнт, який набуває значення ≤1.

За малих і великих значень концентрацій b<1. У певних межах концентрацій b = 1 і тоді (рис. 7.3).

Рис. 7.3. Залежність інтенсивності випромінювання від концентрації

Якщо b<1, то відбувається явище іонізації атомів у полум’ї (малі концентрації) чи самопоглинання (великі концентрації). Для аналізу вибирають концентрації, де між І (і, мкА) та С існує лінійна залежність, і використовують традиційні способи знаходження концентрації – порівняння, градуйованого графіка, стандартних добавок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]