
- •1. Краткая характеристика курса (теории информации), цель и задачи.
- •2. Амплитудная, частотная и фазовая модуляция.
- •3. Сообщение как случайный процесс
- •4. Сигналы ам и чм в виде временного, спектрального и векторного вида.
- •5. Величина Хартли. Количественная оценка информации.
- •6. Спектральное отличие сигналов чм и фм и частота полосовой ширины.
- •7. Представление об информации.
- •9. Распространение информации по дискретному каналу без помех.
- •10. Способы дискретной модуляции.
- •11. Пропускная способность канала без помех.
- •12. Исправление одиночных или обнаружение двойных ошибок.
- •13. Теорема пропускной способности дискретного канала без помех.
- •14. Циклические коды.
- •15. Математическая модель дискретного канала без помех.
- •16. Методы построения циклических кодов.
- •17. Дискретные каналы с помехами. Понятие помех.
- •Естественные помехи
- •Искусственные помехи
- •18. Рентабельность теоремы о кодировании.
- •19. Скорость передачи информаци и пропускная способность.
- •20. Сообщающие коды об ошибках.
- •23. Пропускная способность дискретных каналов с помехами.
- •24. Циклические линейные коды.
- •25. Теоремы для пропускной способности дискретного канала с помехами.
- •26. Критерии оптимального приёма информации
- •27. Математическая модель дискретного канала с помехами.
- •29. Непрерывный канал. Передача информации в непрерывном канале.
- •30. Синтез Алгоритмов и схем оптимальных приёмников, корреляционный приёмник.
- •31. Дискретизация и принципы восстановления информации.
- •32. Разность модуляции и приема.
- •33. Разложение непрерывного сигнала в ортогональные ряды.
- •34. Многоканальная связь.
- •35. Ряды Фурье и применение их в технике связи.
- •36. Методы частотного, временного и фазового разделения сигналов.
- •37. Теорема Котельникова (основная теорема Шеннона).
- •38. Разделение сигналов по форме (кодовое разделение).
- •39. Пропускная способность непрерывного канала.
- •40. Комбинационное разделение.
- •41. Модель непрерывного канала связи.
- •42.Цифровые методы распространение непрерывной информации.
- •43. Методы формирования и преобразования сигналов в системе связи.
- •44. Аналого-цифровые и цифро-аналоговые преобразователи.
- •45. Модуляция гармонических сигналов.
- •46. Импульсно-кодовая модуляция (икм). Дифференциальные икм.
- •47. Цифровые методы передачи информации.
- •48. Дискретизация по времени и квантование.
- •49. Краткая характеристика курса (теории информации), цель и задачи.
- •50. Теорема об эффективном кодировании.
- •51. Общие принципы использования избыточности
- •52. Понятие помехи. Методы борьбы с помехами.
- •53. Корректирующая способность кода.
- •54. Задачи дискретизации (общая постановка)
- •55. Геометрическая интерпретация блоковых корректирующих кодов.
- •56. Структура кадра икм-30
- •57. Линейные коды
- •58. Критерии оптимального приема сообщений
- •59. Определение проверочных равенств
- •60. Оптимальные когерентные демодуляторы на согласованных фильтрах.
- •61. Составление таблиц опознавателей.
- •62. Оптимальные когерентные приемники (алгоритмы и структурные схемы).
- •63. Математическое введение к линейным кодам.
- •64. Дискретизация по методу наибольшего отклонения.
- •65. Бчх коды.
- •66 Критерии качества восстановления (кода)
- •67. Блоковые коды.
- •68. Свойства энтропии.
- •70. Методы модуляции носителей информации.
- •71. Коды Голея.
- •72. Виды помех.
- •73. Коды Шеннона-Фано-Хаффмена.
- •Алгоритм вычисления кодов Шеннона-Фано
- •74. Математическая модель дискретного канала с помехами.
- •75 Коды Рида-Соломона
- •76. Теорема Котельникова (основная теорема Шеннона)
- •77. Формы представления детерминированных сигналов.
- •78. Модель непрерывного канала.
- •79. Основные этапы обращения информации.
- •2 Достоверность и полнота
- •3 Обработка и систематизация
- •4 Интерпретация
- •80. Балансовая и однополосная модуляция.
45. Модуляция гармонических сигналов.
модулятора подаются опорный сигнал и передаваемый (модулирующий), а на выходе получаем смодулированный, положительная огибающая которого и есть исходный сигнал. Для корректного преобразования необходимо, чтобы несущая частота должна была по крайней мере быть в два раза выше, чем верхняя граница полосы модулирующего сигнала. Например, если мы смодулируем несущую частоту в 40 Гц (см. рисунок) гармоническим сигналом 4 Гц, то получим сигнал, спектр которого состоит из трех гармоник.
Первая — fн, и две другие — боковые частоты fн − F и fн + F. Таким образом спектр модулированного сигнала симметричен, и для рационального использования передающего оборудования одну из боковых полос спектра передаваемого сигнала подавляют. При использовании разных частот опорного сигнала можно одновременно передавать несколько независимых сигналов, только необходимо соблюсти условие непересечения полос смодулированных сигналов. Данный способ модуляции довольно прост в реализации, но зато менее устойчив к помехам, нежели другие методы, рассматриваемые ниже. Помехонеустойчивость объясняется относительно узкой полосой модулированного сигнала (всего в два раза шире, чем у исходного). Тем не менее это обстоятельство позволяет использовать амплитудную модуляцию в низко- и среднечастотных диапазонах электромагнитного спектра.
Частотная модуляция
При частотной модуляции модулирующий сигнал модулирует не мощность опорного сигнала, а его частоту. То есть, если уровень сигнала увеличивается, то частота растет, и наоборот. Из-за этого спектр частотно-модулированного сигнала значительно шире. Соответственно, хорошая похоустойчивость, но необходимо использовать высокочастотные диапазоны вещания.
Фазовая модуляция
При фазовой модуляции модулирующий сигнал модулирует фазу опорного сигнала. При модулировании цифровым (дискретным) сигналом получается сигнал с очень широким спектром, так как фаза резко поворачивается (двоичный сигнал — на 180 градусов). Поэтому ее с успехом применяют для обеспечения помехозащищенной цифровой связи в микроволновых диапазонах.
Цифровые способы модуляции (для аналоговых сигналов)
Ипульсно-кодовая модуляция
Для передачи аналогового сигнала по цифровым линиям связи производят дискретизацию с определенной частотой, которая определяется из расчета не менее, чем в 2 раза выше верхней границы полосы аналогового сигнала (по теореме Котельникова). В каждый момент квантования определяется и кодируется в цифровое значение уровень аналогового сигнала. Качество модуляции определяется частотой дискретизации и разрядностью кодирования уровня. В цифровой телефонии используют 8-битное кодирование (256 уровней, 11 КГц), в CD-Audio используют 16-битное кодирование (65536 уровней сигнала, 44,1 КГц, а в DVD-Audio, например, 24бит/192 КГц).
Дельта-сигма модуляция
При кодировании уровня аналогового сигнала требуется передавать несколько битов, а если уровень сигнала изменяется плавно, то получается избыточность передаваемой информации. Поэтому можно кодировать и передавать только единичное изменение уровня сигнала: 0 — уменьшение, 1 — увеличение уровня сигнала. А если дискретизировать с очень большой частотой (в SACD — Super Audio CD — около 2,8 МГц), то качество модуляции будет сравнимо с качеством DVD-Audio, так как при этом можно улавливать «тончайшие» изменения уровня сигнала. Для уменьшения информационного потока при DSM-модуляции часто применяют кодирование повторяющихся последовательностей битов