
- •1. Краткая характеристика курса (теории информации), цель и задачи.
- •2. Амплитудная, частотная и фазовая модуляция.
- •3. Сообщение как случайный процесс
- •4. Сигналы ам и чм в виде временного, спектрального и векторного вида.
- •5. Величина Хартли. Количественная оценка информации.
- •6. Спектральное отличие сигналов чм и фм и частота полосовой ширины.
- •7. Представление об информации.
- •9. Распространение информации по дискретному каналу без помех.
- •10. Способы дискретной модуляции.
- •11. Пропускная способность канала без помех.
- •12. Исправление одиночных или обнаружение двойных ошибок.
- •13. Теорема пропускной способности дискретного канала без помех.
- •14. Циклические коды.
- •15. Математическая модель дискретного канала без помех.
- •16. Методы построения циклических кодов.
- •17. Дискретные каналы с помехами. Понятие помех.
- •Естественные помехи
- •Искусственные помехи
- •18. Рентабельность теоремы о кодировании.
- •19. Скорость передачи информаци и пропускная способность.
- •20. Сообщающие коды об ошибках.
- •23. Пропускная способность дискретных каналов с помехами.
- •24. Циклические линейные коды.
- •25. Теоремы для пропускной способности дискретного канала с помехами.
- •26. Критерии оптимального приёма информации
- •27. Математическая модель дискретного канала с помехами.
- •29. Непрерывный канал. Передача информации в непрерывном канале.
- •30. Синтез Алгоритмов и схем оптимальных приёмников, корреляционный приёмник.
- •31. Дискретизация и принципы восстановления информации.
- •32. Разность модуляции и приема.
- •33. Разложение непрерывного сигнала в ортогональные ряды.
- •34. Многоканальная связь.
- •35. Ряды Фурье и применение их в технике связи.
- •36. Методы частотного, временного и фазового разделения сигналов.
- •37. Теорема Котельникова (основная теорема Шеннона).
- •38. Разделение сигналов по форме (кодовое разделение).
- •39. Пропускная способность непрерывного канала.
- •40. Комбинационное разделение.
- •41. Модель непрерывного канала связи.
- •42.Цифровые методы распространение непрерывной информации.
- •43. Методы формирования и преобразования сигналов в системе связи.
- •44. Аналого-цифровые и цифро-аналоговые преобразователи.
- •45. Модуляция гармонических сигналов.
- •46. Импульсно-кодовая модуляция (икм). Дифференциальные икм.
- •47. Цифровые методы передачи информации.
- •48. Дискретизация по времени и квантование.
- •49. Краткая характеристика курса (теории информации), цель и задачи.
- •50. Теорема об эффективном кодировании.
- •51. Общие принципы использования избыточности
- •52. Понятие помехи. Методы борьбы с помехами.
- •53. Корректирующая способность кода.
- •54. Задачи дискретизации (общая постановка)
- •55. Геометрическая интерпретация блоковых корректирующих кодов.
- •56. Структура кадра икм-30
- •57. Линейные коды
- •58. Критерии оптимального приема сообщений
- •59. Определение проверочных равенств
- •60. Оптимальные когерентные демодуляторы на согласованных фильтрах.
- •61. Составление таблиц опознавателей.
- •62. Оптимальные когерентные приемники (алгоритмы и структурные схемы).
- •63. Математическое введение к линейным кодам.
- •64. Дискретизация по методу наибольшего отклонения.
- •65. Бчх коды.
- •66 Критерии качества восстановления (кода)
- •67. Блоковые коды.
- •68. Свойства энтропии.
- •70. Методы модуляции носителей информации.
- •71. Коды Голея.
- •72. Виды помех.
- •73. Коды Шеннона-Фано-Хаффмена.
- •Алгоритм вычисления кодов Шеннона-Фано
- •74. Математическая модель дискретного канала с помехами.
- •75 Коды Рида-Соломона
- •76. Теорема Котельникова (основная теорема Шеннона)
- •77. Формы представления детерминированных сигналов.
- •78. Модель непрерывного канала.
- •79. Основные этапы обращения информации.
- •2 Достоверность и полнота
- •3 Обработка и систематизация
- •4 Интерпретация
- •80. Балансовая и однополосная модуляция.
44. Аналого-цифровые и цифро-аналоговые преобразователи.
Аналого-цифровой преобразователь (АЦП)-устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя).
Как правило, АЦП - электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства, такие как преобразователь угол-код, следует также относить к АЦП.
Разрешение (разрядность) АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. Измеряется в битах. Например, АЦП, способный выдать 256 дискретных значений (0..255), имеет разрядность 8 бит, поскольку 28 = 256.
Разрешение может быть также определено в терминах входного сигнала и выражено, например, в вольтах. Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:
На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (effective number of bits — ENOB), которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумленного сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение С/Ш входного сигнала должно быть примерно 6 дБ на каждый бит разрядности.
Линейные АЦП Большинство АЦП считаются линейными, хотя аналого-цифровое преобразование по сути является нелинейным процессом. Термин линейный применительно к АЦП означает, что диапазон входных значений, отображаемый на выходное цифровое значение, связан по линейному закону с этим выходным значением, то есть выходное значение k достигается при диапазоне входных значений от m, где m и b — некоторые константы. Константа b, как правило, имеет значение 0 или −0.5. Если b = 0, АЦП называют квантователь с ненулевой ступенью, если же b = −0.5, то АЦП называют квантователь с нулём в центре шага квантования.
Если бы плотность вероятности амплитуды входного сигнала имела равномерное распределение, то отношение сигнал/шум (применительно к шуму квантования) было бы максимально возможным. По этой причине обычно перед квантованием по амплитуде сигнал пропускают через безынерционный преобразователь, передаточная функция которого повторяет функцию распределения самого сигнала. Это улучшает достоверность передачи сигнала, так как наиболее важные области амплитуды сигнала квантуются с лучшим разрешением. Соответственно, при цифро-аналоговом преобразовании потребуется обработать сигнал функцией, обратной функции распределения исходного сигнала.
Это тот же принцип, что и используемый в компандерах, применяемых в магнитофонах и различных коммуникационных системах, он направлен на максимизацию энтропии. Например, голосовой сигнал имеет лапласово распределение амплитуды. Это означает, что окрестность нуля по амплитуде несёт больше информации, чем области с большей амплитудой. По этой причине логарифмические АЦП часто применяются в системах передачи голоса для увеличения динамического диапазона передаваемых значений без изменения качества передачи сигнала в области малых амплитуд.