
- •К госэкзамену по химии (д/о, 4 курс, магистры по кафедре физической химии) Вопросы
- •Сольватация и гидратация Недостатки теории электролитической диссоциации Аррениуса
- •Теплоты сольватации (гидратации)
- •Модельные методы расчета энергии гидратации ионов
- •Определение реальных энергий гидратации ионов
- •Энтропия сольватации ионов
- •Состояние ионов в растворах
- •2. Теоретическая интерпретация электропроводности
- •1. Гидродинамическая теория
- •2. Теория электропроводности Дебая – Онзагера
- •3. Кинетическая теория электропроводности
- •4. Прототропная теория электропроводности
- •Электроды первого рода
- •Электроды второго рода
- •Газовые электроды
- •Амальгамные электроды
- •Окислительно-восстановительные, или редокси-электроды
- •4. Неравновесные электродные процессы. Электродная поляризация, перенапряжение. Теория электрохимического перенапряжения Эрдей-Груза и Фольмера
- •Эдс поляризации. Электродная поляризация и ее виды
- •Понятие об электрохимической стадии
- •Основы теории электрохимического перенапряжения
- •5. Реакция катодного выделения водорода: опытные закономерности, возможные стадии реакции, механизм водородного перенапряжения на различных металлах Общая характеристика процесса
- •Закономерности перенапряжения выделения водорода
- •1. Влияние плотности тока
- •2. Влияние природы металла
- •3. Влияние природы и состава раствора
- •4. Влияние температуры и некоторых других факторов
- •Возможные стадии и пути протекания процесса катодного выделения водорода
- •Природа водородного перенапряжения на различных металлах
- •6. Анодное растворение металлов. Пассивность
- •Общая характеристика анодного растворения металлов
- •Пассивность металлов
- •Природа металлического перенапряжения
Амальгамные электроды
Это полуэлементы, в которых амальгама какого-либо металла находится в контакте с раствором, содержащим ионы этого металла:
Мn+ Mm , Hg , mMn+ + mne Mm (Hg) .
Ртуть ведет себя как инертная среда, в которой растворен металл, а потенциалоопределяющими являются ионы этого металла:
=
+ 2,303
lg
,
то есть потенциал зависит от активности ионов металла не только в растворе, но и в амальгаме. Если металл находится в ртути в атомарном состоянии (m = 1), то можно написать:
=
+ 2,303
lg
.
Амальгамные электроды широко применяются в технике и в лабораторной практике. Кадмиевый амальгамный электрод Cd2+ Cd, Hg (Cd2+ + 2e Cd (Hg)) в виде амальгамы, содержащей 12,5% Cd, используется для изготовления нормальных элементов Вестона, ЭДС которых практически не изменяется со временем. Кроме того, амальгамные электроды – практически единственные электроды (если не принимать во внимание ионселективные электроды, их следует рассматривать особо), которые могут быть обратимы по отношению к ионам щелочных и щелочноземельных металлов.
Окислительно-восстановительные, или редокси-электроды
Любая электродная реакция связана с изменением окислительно-восстановительного состояния участвующих в ней веществ, и в этом смысле все электроды представляют собой редокси-системы. Однако термин окислительно-восстановительные, или редокси-электроды, употребляется обычно в тех случаях, когда в реакции не участвуют непосредственно металлы или газы. Металл в редокси-электроде, обмениваясь электронами с участниками окислительно-восстановительной реакции, принимает потенциал, отвечающий установившемуся редокси-равновесию. К металлическому проводнику предъявляются здесь те же требования, что и в случае газовых электродов.
Следует различать простые и сложные редокси-электроды. В первом случае электродная реакция сводится к перемене валентности ионов без изменения их состава, например
Fe3+ + e = Fe2+ ,
Tl3+ + 2e = Tl+ ,
MnO4– + e = MnO42– ,
Fe (CN)63– + e = Fe (CN)64– .
Если обозначить окисленные ионы Ox, а восстановленные Red, то все написанные выше реакции можно выразить одним общим уравнением
Ox + ne = Red .
Простой редокси-электрод записывается в виде схемы
Red, Ox Pt ,
а его потенциал дается уравнением
ERed,Ox
= EoRed,Ox
+ 2,303
lg
.
Как видно, потенциал простого редокси-электрода определяется отношением активностей ионов в двух различных степенях окисления. Если элемент образует ионы нескольких валентностей, то ему будет отвечать столько редокси-электродов, сколько можно получить попарных сочетаний (три валентности три различных редокси-электрода).
Потенциалы
простых редокси-электродов можно легко
связать с потенциалами соответствующих
электродов первого рода.
Пусть, например, металл М способен
существовать в растворе в виде ионов
высшей валентности Мh
и низшей валентности Mn.
Для него возможны два электрода первого
рода Mh
M
и Mn
M
и один редокси-электрод Mn,
Mh
M
, стандартные потенциалы которых
соответственно равны
,
и
.
Связь между этими величинами можно
найти, проведя мысленно процесс
электрохимического растворения металла
М с получением ионов высшей валентности
Mh
либо непосредственно, либо через
промежуточное образование ионов низшей
валентности Mn.
Предполагается, что процесс растворения
протекает обратимо и изотермически в
бесконечно большом объеме раствора, в
котором активности ионов каждого сорта
равны 1. Этот процесс можно представить
в виде следующего простого цикла:
hFEoh
M Mh
nFEon (hn)FEon,h
Mn
Из цикла следует: hEoh = nEon + (h n)Eon,h .
Это уравнение известно как правило Лютера; по нему можно рассчитать стандартный потенциал любого из трех электродов, если известны значения стандартных потенциалов двух других электродов. Уравнение применяется в тех случаях, когда непосредственное определение одного из потенциалов или затруднительно, или невозможно. Так, например, потенциал электрода первого рода Fe3+ | Fe , измерить который непосредственно не удается из-за неустойчивости в этих условиях ионов Fe3+, можно найти из доступных прямому измерению стандартных потенциалов электрода первого рода Fe2+ | Fe и простого редокси-электрода Fe2+, Fe3+| Fe:
=
+
.
В сложных редокси-электродах реакция протекает с изменением валентности реагирующих частиц и их состава. В реакциях такого рода участвуют обычно ионы водорода и молекулы воды; участие молекул воды не сказывается на характере уравнений для электродного потенциала, так как активность воды в ходе реакции (за исключением очень концентрированных растворов) остается постоянной. Схему сложного редокси-электрода можно записать следующим образом:
Red, Ox, H+ | Pt .
Таким образом, потенциал сложного редокси-электрода является функцией не только активностей окисленных и восстановленных частиц, но и активности водородных ионов. Например, для системы MnO4– Mn2+, в которой протекает электродная реакция
MnO4– + 8H+ + 5e = Mn2+ + 4H2O ,
потенциал электрода передается уравнением
=
+
ln
=
=
+ 2,303
lg
+ 2,303
lg
.
Сложные редокси-электроды можно использовать как индикаторные электроды при измерении рН. Для этой цели часто применяют электрод, обратимый по отношению к системе хинон-гидрохинон. Для системы хинон-гидрохинон (х, гх) с реакцией
С6Н4О2 + 2Н+ + 2е = С6Н4(ОН)2
потенциалу электрода отвечает уравнение
Eх,
гх = Eох,
гх + 2,303
lg
= Eох,
гх + 2,303
lg
+
+ 2,303 lg .
В раствор, рН которого хотят измерить, вводят эквимолярную смесь хинона и гидрохинона. Если считать, что отношение концентраций равно отношению активностей
=
= 1 ,
то уравнение упрощается до
Eх, гх = Eох, гх + 2,303 lg = Eох, гх 2,303 рН
и потенциал такого электрода, обычно называемого хингидронным, будет определяться непосредственно значением рН раствора. При 25оС Eох, гх = 0,6992 В; температурная зависимость Eох, гх хорошо изучена. Хингидронный электрод легко приготовляется и удобен в работе. Хингидронным электродом нельзя пользоваться в щелочных растворах (гидрохинон слабая кислота, в щелочной среде он сильно диссоциирует и концентрация его в насыщенном растворе не является постоянной), а также в присутствии сильных окислителей или восстановителей.