
- •Ответы на билеты
- •Предсказание. Определение. Классификации.
- •2.Задачи и методы социально-экономического прогнозирования.
- •3. Число. Шкала. Зависимость применимости методов прогнозирования от шкалы.
- •4. Анализ динамического ряда. Виды трендов.
- •5. Сглаживание динамического ряда. Сравнительный анализ.
- •6. Метод скользящей средней при нечетной базе сглаживания.
- •Сглаживание по нечётной базе
- •7. Метод скользящей средней при четной базе сглаживания.
- •8. Достоинства и недостатки метода скользящей средней.
- •Достоинства и недостатки метода
- •9. Метод экспоненциального сглаживания.
- •11. Зависимость результата экспоненциального сглаживания от всего ряда данных. Достоинства и недостатки метода экспоненциального сглаживания.
- •12. Прогнозирование на основе сплайн-функций.
- •13. Прогнозирование на основе аналитического тренда. Критерии соответствия тренда исходным данным. Метод наименьших квадратов.
- •Метод наименьших квадратов
- •Система уравнений для линейного тренда
- •Система уравнений для экспоненциального тренда
- •14. Способы определения типа тренда. Тест на линейную функцию.
- •Определение тренда на основе сглаживания ряда
- •15. Определение параметров линейного тренда. Смысл параметров линейного тренда. Прогнозирование на основе линейного тренда.
- •16. Определение параметров экспоненциального тренда. Смысл параметров экспоненциального тренда. Прогнозирование на основе экспоненциального тренда.
- •17. Понятие сезонности. Природа, виды сезонных колебаний.
- •18. Процедура выявления аддитивной сезонной составляющей ряда данных.
- •19. Процедура выявления мультипликативной сезонной составляющей ряда данных.
- •20. Построение прогноза с учетом сезонных колебаний.
- •21. Экстраполяция и интерполяция. Критерии точности прогноза.
- •Критерии для оценки точности прогноза
- •22. Регрессия. Отбор факторов для регрессии.
- •Отбор факторов для регрессии
- •23. Производственная функция и ее смысл. Виды производственных функций.
- •24. Смысл и расчёт параметров производственной функции Кобба-Дугласа. Прогнозирование на основе производственной функции Кобба-Дугласа.
- •25. Факторный анализ. Порядок проведения. Направления использования.
- •26. Сетевое планирование. Построение плана.
- •27. Сетевое планирование. Оптимизация плана.
- •28. Сценарное прогнозирование.
- •29. Постановка задачи линейного планирования. Экономические интерпретации задачи.
- •30. Определение устойчивости решения задачи линейного планирования при изменении целевой функции. Экономические интерпретации задачи. Графическая интерпретация решения.
- •31. Определение устойчивости решения задачи линейного планирования при изменении правых частей ограничений. Экономические интерпретации задачи. Графическая интерпретация решения.
- •32. Экспертные оценки. Сфера применения и порядок проведения.
- •33. Экспертные оценки. Варианты построения коллективной экспертной оценки.
- •34. Экспертные оценки с учётом компетентности экспертов.
- •Выбор экспертов
- •Организация взаимодействия экспертов
- •35. Имитационное моделирование. Сфера применения и порядок проведения.
- •36. Стандартизированная случайная величина. Датчик случайных чисел. Моделирование случайной величины с произвольной функцией распределения.
- •38. Система массового обслуживания. Схема. Основные характеристики.
- •39. Система массового обслуживания. Поток требований.
- •40. Система массового обслуживания. Механизм обслуживания.
- •41. Система массового обслуживания. Дисциплина очереди.
- •42. Самореализующиеся прогнозы.
11. Зависимость результата экспоненциального сглаживания от всего ряда данных. Достоинства и недостатки метода экспоненциального сглаживания.
Модели экспоненциального сглаживания и прогнозирования относятся к классу адаптивных методов прогнозирования, основной характеристикой которых является способность непрерывно учитывать эволюцию динамических характеристик изучаемых процессов, подстраиваться под эту динамику, придавая, в частности, тем больший вес и тем более высокую информационную ценность имеющимся наблюдениям, чем ближе они расположены к текущему моменту времени. Смысл термина состоит в том, что адаптивное прогнозирование позволяет обновлять прогнозы с минимальной задержкой и с помощью относительно несложных математических процедур.
Сущность метода экспоненциального сглаживания заключается в том, что временной ряд сглаживается с помощью взвешенной скользящей средней, в которой веса подчиняются экспоненциальному закону. Взвешенная скользящая средняя с экспоненциально распределенными весами характеризует значение процесса на конце интервала сглаживания, то есть является средней характеристикой последних уровней ряда. Именно это свойство и используется для прогнозирования.
Обычное экспоненциальное сглаживание применяется в случае отсутствия в данных тренда или сезонности. В этом случае прогноз является взвешенной средней всех доступных предыдущих значений ряда; веса при этом со временем геометрически убывают по мере продвижения в прошлое (назад). Поэтому (в отличие от метода скользящего среднего) здесь нет точки, на которой веса обрываются, то есть зануляются.
В методе простого экспоненциального сглаживания применяется взвешенное (экспоненциально) скользящее усреднение всех данных предыдущих наблюдений. Эта модель чаще всего применяется к данным, в которых необходимо оценить наличие зависимости между анализируемыми показателями (тренда) или зависимость анализируемых данных. Целью экспоненциального сглаживания является оценка текущего состояния, результаты которого определят все последующие прогнозы.
Экспоненциальное сглаживание предусматривает постоянное обновление модели за счет наиболее свежих данных. Этот метод основывается на усреднении (сглаживании) временных рядов прошлых наблюдений в нисходящем (экспоненциально) направлении. То есть более поздним событиям присваивается больший вес. Вес присваивается следующим образом: для последнего наблюдения весом будет величина α, для предпоследнего – (1-α), для того, которое было перед ним, - (1-α)2 и т.д.
В сглаженном виде новый прогноз (для периода времени t+1) можно представлять как взвешенное среднее последнего наблюдения величины в момент времени t и ее прежнего прогноза на этот же период t. Причем вес α присваивается наблюдаемому значению, а вес (1- α) – прогнозу; при этом полагается, что 0< α<1. Это правило в общем виде можно записать следующим образом.
Новый прогноз = [α*(последнее наблюдение)]+[(1- α)*последний прогноз]
(1)
где
- прогнозируемое значение на следующий
период;
α – постоянная сглаживания;
Yt – наблюдение величины за текущий период t;
-
прежний сглаженный прогноз этой величины
на период t.
Экспоненциальное сглаживание – это процедура для постоянного пересмотра результатов прогнозирования в свете самых последних событий.
Постоянная сглаживания α является взвешенным фактором. Ее реальное значение определяется тем, в какой мере текущее наблюдение должно влиять на прогнозируемую величину. Если α близко к 1, значит в прогнозе существенно учитывается величина ошибки последнего прогнозирования. И наоборот, при малых значениях α прогнозируемая величина наиболее близка к предыдущему прогнозу. Можно представить как взвешенное среднее значение всех прошлых наблюдений с весовыми коэффициентами, экспоненциально убывающими с «возрастом» данных.
Основные достоинства метода состоят в возможности учета весов исходной информации, в простоте вычислительных операций, в гибкости описания различных динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение методнашел для реализации среднесрочных прогнозов. Для метода экспоненциального сглаживания основным и наиболее трудным моментом является выбор параметра сглаживания α, начальных условий и степени прогнозирующего полинома.