
- •Ответы на билеты
- •Предсказание. Определение. Классификации.
- •2.Задачи и методы социально-экономического прогнозирования.
- •3. Число. Шкала. Зависимость применимости методов прогнозирования от шкалы.
- •4. Анализ динамического ряда. Виды трендов.
- •5. Сглаживание динамического ряда. Сравнительный анализ.
- •6. Метод скользящей средней при нечетной базе сглаживания.
- •Сглаживание по нечётной базе
- •7. Метод скользящей средней при четной базе сглаживания.
- •8. Достоинства и недостатки метода скользящей средней.
- •Достоинства и недостатки метода
- •9. Метод экспоненциального сглаживания.
- •11. Зависимость результата экспоненциального сглаживания от всего ряда данных. Достоинства и недостатки метода экспоненциального сглаживания.
- •12. Прогнозирование на основе сплайн-функций.
- •13. Прогнозирование на основе аналитического тренда. Критерии соответствия тренда исходным данным. Метод наименьших квадратов.
- •Метод наименьших квадратов
- •Система уравнений для линейного тренда
- •Система уравнений для экспоненциального тренда
- •14. Способы определения типа тренда. Тест на линейную функцию.
- •Определение тренда на основе сглаживания ряда
- •15. Определение параметров линейного тренда. Смысл параметров линейного тренда. Прогнозирование на основе линейного тренда.
- •16. Определение параметров экспоненциального тренда. Смысл параметров экспоненциального тренда. Прогнозирование на основе экспоненциального тренда.
- •17. Понятие сезонности. Природа, виды сезонных колебаний.
- •18. Процедура выявления аддитивной сезонной составляющей ряда данных.
- •19. Процедура выявления мультипликативной сезонной составляющей ряда данных.
- •20. Построение прогноза с учетом сезонных колебаний.
- •21. Экстраполяция и интерполяция. Критерии точности прогноза.
- •Критерии для оценки точности прогноза
- •22. Регрессия. Отбор факторов для регрессии.
- •Отбор факторов для регрессии
- •23. Производственная функция и ее смысл. Виды производственных функций.
- •24. Смысл и расчёт параметров производственной функции Кобба-Дугласа. Прогнозирование на основе производственной функции Кобба-Дугласа.
- •25. Факторный анализ. Порядок проведения. Направления использования.
- •26. Сетевое планирование. Построение плана.
- •27. Сетевое планирование. Оптимизация плана.
- •28. Сценарное прогнозирование.
- •29. Постановка задачи линейного планирования. Экономические интерпретации задачи.
- •30. Определение устойчивости решения задачи линейного планирования при изменении целевой функции. Экономические интерпретации задачи. Графическая интерпретация решения.
- •31. Определение устойчивости решения задачи линейного планирования при изменении правых частей ограничений. Экономические интерпретации задачи. Графическая интерпретация решения.
- •32. Экспертные оценки. Сфера применения и порядок проведения.
- •33. Экспертные оценки. Варианты построения коллективной экспертной оценки.
- •34. Экспертные оценки с учётом компетентности экспертов.
- •Выбор экспертов
- •Организация взаимодействия экспертов
- •35. Имитационное моделирование. Сфера применения и порядок проведения.
- •36. Стандартизированная случайная величина. Датчик случайных чисел. Моделирование случайной величины с произвольной функцией распределения.
- •38. Система массового обслуживания. Схема. Основные характеристики.
- •39. Система массового обслуживания. Поток требований.
- •40. Система массового обслуживания. Механизм обслуживания.
- •41. Система массового обслуживания. Дисциплина очереди.
- •42. Самореализующиеся прогнозы.
35. Имитационное моделирование. Сфера применения и порядок проведения.
Имитационное моделирование - это метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.
Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).
Имитационное моделирование - это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае математическая модель заменяется имитатором или имитационной моделью.
Имитационная модель -- логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.
К имитационному моделированию прибегают в случаях, когда:
- дорого или невозможно экспериментировать на реальном объекте;
- невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
- необходимо сымитировать поведение системы во времени.
Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами -- разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.
Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.
Области применения имитационного моделирования:
- бизнес процессы;
- боевые действия;
- динамика населения;
- дорожное движение;
- ИТ-инфраструктура;
- математическое моделирование исторических процессов;
- логистика;
- пешеходная динамика;
- производство;
- рынок и конкуренция;
- сервисные центры;
- цепочки поставок;
- уличное движение;
- управление проектами;
- экономика здравоохранения;
- экосистемы
Применение метода имитационного моделирования можно продемонстрировать на примере работы отделения банка по обслуживанию физических лиц. Допустим, что необходимо определить минимальное количество обслуживающего персонала, которое обеспечивает требуемое качество сервиса.
Критерий качества сервиса зададим правилом: средний размер очереди клиентов не должен превышать N человек. Очевидно, что для решения поставленной задачи необходимо иметь достаточные знания о системе: какие клиенты посещают банк, какое количество клиентов приходит в течение рабочего дня, а также сколько времени занимает обслуживание одного клиента.
Хотя данная задача и может показаться специализированной, схожие проблемы возникают во многих областях, где задействованы людские и технические ресурсы. Оплата времени работы квалифицированного работника и времени использования сложной техники составляет немалую долю расходов компаний. Определение оптимального графика использования ресурсов, позволяющего системе эффективно выполнять поставленные задачи, позволяет снизить расходы, а значит увеличить прибыльность.
На первом этапе решения задачи создается модель, которая соответствует структуре и бизнес-процессам отделения банка. В ходе разработки модели учитываются только те детали, которые оказывают существенное влияние на изучаемые аспекты работы системы. Например, наличие отделения обслуживания юридических лиц или кредитного отдела не влияет на обслуживание физических лиц, поскольку они физически и функционально отделены от последнего.
На втором этапе на вход модели подаются исходные данные: интенсивность прихода клиентов, среднее время обслуживания клиентов, количество доступного персонала. На основании этих данных модель имитирует, или воспроизводит, работу банка в течение заданного промежутка времени, например, рабочего дня.
Следующий этап заключается в анализе статистики, собранной и представленной моделью. Если средний размер очереди клиентов превышает выбранный предел в N человек, то количество доступного персонала следует увеличить и выполнить новый эксперимент.
В результате проведения серии экспериментов над моделью пользователь может определить оптимальное количество персонала. Процесс подбора параметров может быть осуществлен также и с помощью встроенного оптимизатора, который в автоматическом режиме проверяет различные сочетания и находит лучшее решение.