
- •Ответы на билеты
- •Предсказание. Определение. Классификации.
- •2.Задачи и методы социально-экономического прогнозирования.
- •3. Число. Шкала. Зависимость применимости методов прогнозирования от шкалы.
- •4. Анализ динамического ряда. Виды трендов.
- •5. Сглаживание динамического ряда. Сравнительный анализ.
- •6. Метод скользящей средней при нечетной базе сглаживания.
- •Сглаживание по нечётной базе
- •7. Метод скользящей средней при четной базе сглаживания.
- •8. Достоинства и недостатки метода скользящей средней.
- •Достоинства и недостатки метода
- •9. Метод экспоненциального сглаживания.
- •11. Зависимость результата экспоненциального сглаживания от всего ряда данных. Достоинства и недостатки метода экспоненциального сглаживания.
- •12. Прогнозирование на основе сплайн-функций.
- •13. Прогнозирование на основе аналитического тренда. Критерии соответствия тренда исходным данным. Метод наименьших квадратов.
- •Метод наименьших квадратов
- •Система уравнений для линейного тренда
- •Система уравнений для экспоненциального тренда
- •14. Способы определения типа тренда. Тест на линейную функцию.
- •Определение тренда на основе сглаживания ряда
- •15. Определение параметров линейного тренда. Смысл параметров линейного тренда. Прогнозирование на основе линейного тренда.
- •16. Определение параметров экспоненциального тренда. Смысл параметров экспоненциального тренда. Прогнозирование на основе экспоненциального тренда.
- •17. Понятие сезонности. Природа, виды сезонных колебаний.
- •18. Процедура выявления аддитивной сезонной составляющей ряда данных.
- •19. Процедура выявления мультипликативной сезонной составляющей ряда данных.
- •20. Построение прогноза с учетом сезонных колебаний.
- •21. Экстраполяция и интерполяция. Критерии точности прогноза.
- •Критерии для оценки точности прогноза
- •22. Регрессия. Отбор факторов для регрессии.
- •Отбор факторов для регрессии
- •23. Производственная функция и ее смысл. Виды производственных функций.
- •24. Смысл и расчёт параметров производственной функции Кобба-Дугласа. Прогнозирование на основе производственной функции Кобба-Дугласа.
- •25. Факторный анализ. Порядок проведения. Направления использования.
- •26. Сетевое планирование. Построение плана.
- •27. Сетевое планирование. Оптимизация плана.
- •28. Сценарное прогнозирование.
- •29. Постановка задачи линейного планирования. Экономические интерпретации задачи.
- •30. Определение устойчивости решения задачи линейного планирования при изменении целевой функции. Экономические интерпретации задачи. Графическая интерпретация решения.
- •31. Определение устойчивости решения задачи линейного планирования при изменении правых частей ограничений. Экономические интерпретации задачи. Графическая интерпретация решения.
- •32. Экспертные оценки. Сфера применения и порядок проведения.
- •33. Экспертные оценки. Варианты построения коллективной экспертной оценки.
- •34. Экспертные оценки с учётом компетентности экспертов.
- •Выбор экспертов
- •Организация взаимодействия экспертов
- •35. Имитационное моделирование. Сфера применения и порядок проведения.
- •36. Стандартизированная случайная величина. Датчик случайных чисел. Моделирование случайной величины с произвольной функцией распределения.
- •38. Система массового обслуживания. Схема. Основные характеристики.
- •39. Система массового обслуживания. Поток требований.
- •40. Система массового обслуживания. Механизм обслуживания.
- •41. Система массового обслуживания. Дисциплина очереди.
- •42. Самореализующиеся прогнозы.
2.Задачи и методы социально-экономического прогнозирования.
Задача социально-экономического прогнозирования состоит, с одной стороны, в том, чтобы выяснить перспективы ближайшего или более отдаленного будущего в исследуемой области, а с другой стороны, способствовать оптимизации текущего и перспективного планирования и регулирования экономики, опираясь на составленный прогноз.
Под методами прогнозирования следует понимать совокупность приемов и способов мышления, позволяющих на основе ретроспективных данных внешних и внутренних связей объекта прогнозирования, а также их измерений в рамках рассматриваемого явления или процесса вывести суждения определенного и достоверного относительно будущего состояния и развития объекта.
В настоящее время насчитывается свыше 150 различных методов прогнозирования, из которых на практике используется 15-20.
В процессе экономического прогнозирования используются как общие научные методы и подходы к исследованию, так и специфические методы, свойственные социально-экономическому прогнозированию. В числе общих методов можно выделить следующие:
- исторический метод заключается в рассмотрении каждого явления во взаимосвязи его исторических форм;
- комплексный метод заключается в рассмотрении явлений в их взаимозависимости, используя для этого методы исследования не только данной, но и других наук, изучающих эти явления;
- системный метод предполагает исследование количественных и качественных закономерностей протекания вероятностных процессов в сложных экономических системах;
- структурный метод позволяет установить причины исследуемого явления, объяснить его структуру;
- системно-структурный метод предполагает, с одной стороны, рассмотрение системы в качестве динамически развивающегося целого, а с другой – расчленение системы на составляющие структурные элементы и рассмотрение их во взаимодействии.
Специфические методы экономического прогнозирования целиком и полностью связаны с экономической прогностикой. Среди инструментов экономической прогностики важную роль играют экономико-математические методы, методы экономико-математического моделирования, статистической экстраполяции и др.
3. Число. Шкала. Зависимость применимости методов прогнозирования от шкалы.
Число — основное понятие математики, используемое для количественной характеристики, сравнения и нумерации объектов.
Шкала измерений (шкала) - отображение множества различных проявлений качественного или количественного свойства на принятое по соглашению упорядоченное множество чисел или другую систему логически связанных знаков (обозначений).
Шкалирование означает классификацию данных по определенным критериям. На практике применяются: номинальная шкала (классификационная), порядковая шкала (ранговая), разностные, абсолютные шкалы.
Шкала |
Допустимая операция |
Пример |
Номинальная |
= |
Имена |
Порядковая |
= <> |
Баллы |
Разностная |
= <> + - |
Температура, Прибыль |
Абсолютная |
= <> + - * / |
Вес, Выручка |
Номинальная шкала. Заключение о связи признаков можно получить графическим (зрительным) и расчётным (аналитическим) путём. Взаимосвязь признаков номинальной шкалы отображается Пузырьковой диаграммой. Из двух признаков один рассматривается как независимый (фактор) – ось абсцисс(X), а другой как определяемый им (зависимый) – ось ординат(Y). Деление признаков на «независимый» и «зависимый» зависит от исследователя.
Ранговая шкала. Взаимосвязь ранговых признаков отображается на двухосной диаграмме. Каждому объекту соответствует отрезок (ступенька лестницы), связывающий значения признаков этого объекта. Нарушение согласованности в порядке варьирования признаков (инверсия порядков – Inv) отображается пересечением ступенек лестницы. Чем меньше инверсий – тем сильней однонаправленная связь признаков, чем больше – тем сильнее разнонаправленная связь. Связь отсутствует, когда инверсий – «в среднем» от максимально возможного числа, равного N*(N-1)/2, где N-число объектов.
Шкала разностей используется для измерения свойств объектов при необходимости выражения, на сколько один объект превосходит другой по одному или нескольким признакам. Является частным случаем шкалы интервалов при выборе единицы масштаба.
Абсолютная шкала - частный случай шкалы интервалов. В шкале обозначается нулевая точка отсчета и единичный масштаб. Применяется для измерения количества объектов.