
- •Ответы на билеты
- •Предсказание. Определение. Классификации.
- •2.Задачи и методы социально-экономического прогнозирования.
- •3. Число. Шкала. Зависимость применимости методов прогнозирования от шкалы.
- •4. Анализ динамического ряда. Виды трендов.
- •5. Сглаживание динамического ряда. Сравнительный анализ.
- •6. Метод скользящей средней при нечетной базе сглаживания.
- •Сглаживание по нечётной базе
- •7. Метод скользящей средней при четной базе сглаживания.
- •8. Достоинства и недостатки метода скользящей средней.
- •Достоинства и недостатки метода
- •9. Метод экспоненциального сглаживания.
- •11. Зависимость результата экспоненциального сглаживания от всего ряда данных. Достоинства и недостатки метода экспоненциального сглаживания.
- •12. Прогнозирование на основе сплайн-функций.
- •13. Прогнозирование на основе аналитического тренда. Критерии соответствия тренда исходным данным. Метод наименьших квадратов.
- •Метод наименьших квадратов
- •Система уравнений для линейного тренда
- •Система уравнений для экспоненциального тренда
- •14. Способы определения типа тренда. Тест на линейную функцию.
- •Определение тренда на основе сглаживания ряда
- •15. Определение параметров линейного тренда. Смысл параметров линейного тренда. Прогнозирование на основе линейного тренда.
- •16. Определение параметров экспоненциального тренда. Смысл параметров экспоненциального тренда. Прогнозирование на основе экспоненциального тренда.
- •17. Понятие сезонности. Природа, виды сезонных колебаний.
- •18. Процедура выявления аддитивной сезонной составляющей ряда данных.
- •19. Процедура выявления мультипликативной сезонной составляющей ряда данных.
- •20. Построение прогноза с учетом сезонных колебаний.
- •21. Экстраполяция и интерполяция. Критерии точности прогноза.
- •Критерии для оценки точности прогноза
- •22. Регрессия. Отбор факторов для регрессии.
- •Отбор факторов для регрессии
- •23. Производственная функция и ее смысл. Виды производственных функций.
- •24. Смысл и расчёт параметров производственной функции Кобба-Дугласа. Прогнозирование на основе производственной функции Кобба-Дугласа.
- •25. Факторный анализ. Порядок проведения. Направления использования.
- •26. Сетевое планирование. Построение плана.
- •27. Сетевое планирование. Оптимизация плана.
- •28. Сценарное прогнозирование.
- •29. Постановка задачи линейного планирования. Экономические интерпретации задачи.
- •30. Определение устойчивости решения задачи линейного планирования при изменении целевой функции. Экономические интерпретации задачи. Графическая интерпретация решения.
- •31. Определение устойчивости решения задачи линейного планирования при изменении правых частей ограничений. Экономические интерпретации задачи. Графическая интерпретация решения.
- •32. Экспертные оценки. Сфера применения и порядок проведения.
- •33. Экспертные оценки. Варианты построения коллективной экспертной оценки.
- •34. Экспертные оценки с учётом компетентности экспертов.
- •Выбор экспертов
- •Организация взаимодействия экспертов
- •35. Имитационное моделирование. Сфера применения и порядок проведения.
- •36. Стандартизированная случайная величина. Датчик случайных чисел. Моделирование случайной величины с произвольной функцией распределения.
- •38. Система массового обслуживания. Схема. Основные характеристики.
- •39. Система массового обслуживания. Поток требований.
- •40. Система массового обслуживания. Механизм обслуживания.
- •41. Система массового обслуживания. Дисциплина очереди.
- •42. Самореализующиеся прогнозы.
21. Экстраполяция и интерполяция. Критерии точности прогноза.
На основании проведённого моделирования основных компонент ряда (тренда и сезонности) можно производить предсказания о возможных значениях этого ряда. В статистике это выражается в экстра- и интерполяции.
Экстраполяция - распространение сложившейся в динамическом ряду закономерности за временные границы ряда. Выражением экстраполяции является прогнозный ряд, как суждение о наиболее вероятном развитии процесса. При этом распространение в будущее называют прогнозом, а в прошлое - постпрогнозом.
Гипотеза экстраполяции: продолжение тенденции в будущем (инертность процессов).
Интерполяция - распространение общей для всего динамич. ряда закономерности на отдельные моменты ряда. Выражением интерполяции является тренд в широком смысле, как суждение об истинном значении ряда.
Гипотеза - тренд отражает основную (скрытую, истинную) закономерность.
Прогнозирование осуществляется подстановкой в уравнение тренда номера периода времени. Трендовое значение корректируется на влияние сезонности. В результате получается точечный прогноз, т.к на графике ему соответствует точка - одно значение за период. Характеризует наиболее вероятное значение. Недостаток точечного прогноза в том, что вероятность реализации именно этого прогноза =0. Для оценки вероятности реализации того или иного значения используют функцию распределения вероятностей, имеющую нормальный вид. Точечный прогноз соответствует вершине распределения. Смысл распределения - вероятность попасть ближе к точечному прогнозу выше, чем к любому другому значению.
Критерии для оценки точности прогноза
Как оценивать то, что мы называем точностью прогноза?
Часто
берется абсолютное отклонение
прогноза
от
истинного значения деленное на истинное
значение:
Такая
относительная величина мало чувствительна
к ошибкам прогноза больших значений и
чрезмерно чувствительна к ошибкам
прогноза величин, близких к нулю. Кроме
того, разница
между
минимальным и максимальным значениями
может быть различной у разных наблюдаемых
характеристик и одинаковая относительная
ошибка
будет
приемлемой для принятия решений в одних
случаях и не приемлемой в других.
В
связи с этим предлагается судить о
точности прогноза
-й
характеристики по величине ошибки,
нормированной по разнице
:
Такая мера обладает одинаковой чувствительностью к ошибкам прогноза для разных значений прогнозируемой характеристики. Ее чувствительность к ошибкам тем выше, чем в меньших пределах колеблется прогнозируемая характеристика, что представляется вполне логичным.
Иногда
важно знать не абсолютную
величину
характеристики
в будущем, а лишь то, будет ли она больше
или меньше значения в данный момент
времени. В таких случаях применима мера
точности прогноза, учитывающая лишь
совпадения знаков:
22. Регрессия. Отбор факторов для регрессии.
Колебания в динамическом ряду часто не строго периодические, но зависят от колебаний другого признака (напр.: стоимость продаж от объёма продаж). Тогда эффективно строить зависимость ряда не от безликого (монотонного) времени, а от этого объясняющего ряда (фактора).
Регрессия – функция одной переменной (изучаемого динамического ряда) от другой(их), называемой(ых) фактором(ами) регрессии.
Регрессия – зависимость среднего значения ряда от значений факторов.
Порядок построения регрессии:
отбор факторов
выбор [функции] регрессии
расчет параметров регрессии
(прогнозирование)