
- •Ответы на билеты
- •Предсказание. Определение. Классификации.
- •2.Задачи и методы социально-экономического прогнозирования.
- •3. Число. Шкала. Зависимость применимости методов прогнозирования от шкалы.
- •4. Анализ динамического ряда. Виды трендов.
- •5. Сглаживание динамического ряда. Сравнительный анализ.
- •6. Метод скользящей средней при нечетной базе сглаживания.
- •Сглаживание по нечётной базе
- •7. Метод скользящей средней при четной базе сглаживания.
- •8. Достоинства и недостатки метода скользящей средней.
- •Достоинства и недостатки метода
- •9. Метод экспоненциального сглаживания.
- •11. Зависимость результата экспоненциального сглаживания от всего ряда данных. Достоинства и недостатки метода экспоненциального сглаживания.
- •12. Прогнозирование на основе сплайн-функций.
- •13. Прогнозирование на основе аналитического тренда. Критерии соответствия тренда исходным данным. Метод наименьших квадратов.
- •Метод наименьших квадратов
- •Система уравнений для линейного тренда
- •Система уравнений для экспоненциального тренда
- •14. Способы определения типа тренда. Тест на линейную функцию.
- •Определение тренда на основе сглаживания ряда
- •15. Определение параметров линейного тренда. Смысл параметров линейного тренда. Прогнозирование на основе линейного тренда.
- •16. Определение параметров экспоненциального тренда. Смысл параметров экспоненциального тренда. Прогнозирование на основе экспоненциального тренда.
- •17. Понятие сезонности. Природа, виды сезонных колебаний.
- •18. Процедура выявления аддитивной сезонной составляющей ряда данных.
- •19. Процедура выявления мультипликативной сезонной составляющей ряда данных.
- •20. Построение прогноза с учетом сезонных колебаний.
- •21. Экстраполяция и интерполяция. Критерии точности прогноза.
- •Критерии для оценки точности прогноза
- •22. Регрессия. Отбор факторов для регрессии.
- •Отбор факторов для регрессии
- •23. Производственная функция и ее смысл. Виды производственных функций.
- •24. Смысл и расчёт параметров производственной функции Кобба-Дугласа. Прогнозирование на основе производственной функции Кобба-Дугласа.
- •25. Факторный анализ. Порядок проведения. Направления использования.
- •26. Сетевое планирование. Построение плана.
- •27. Сетевое планирование. Оптимизация плана.
- •28. Сценарное прогнозирование.
- •29. Постановка задачи линейного планирования. Экономические интерпретации задачи.
- •30. Определение устойчивости решения задачи линейного планирования при изменении целевой функции. Экономические интерпретации задачи. Графическая интерпретация решения.
- •31. Определение устойчивости решения задачи линейного планирования при изменении правых частей ограничений. Экономические интерпретации задачи. Графическая интерпретация решения.
- •32. Экспертные оценки. Сфера применения и порядок проведения.
- •33. Экспертные оценки. Варианты построения коллективной экспертной оценки.
- •34. Экспертные оценки с учётом компетентности экспертов.
- •Выбор экспертов
- •Организация взаимодействия экспертов
- •35. Имитационное моделирование. Сфера применения и порядок проведения.
- •36. Стандартизированная случайная величина. Датчик случайных чисел. Моделирование случайной величины с произвольной функцией распределения.
- •38. Система массового обслуживания. Схема. Основные характеристики.
- •39. Система массового обслуживания. Поток требований.
- •40. Система массового обслуживания. Механизм обслуживания.
- •41. Система массового обслуживания. Дисциплина очереди.
- •42. Самореализующиеся прогнозы.
16. Определение параметров экспоненциального тренда. Смысл параметров экспоненциального тренда. Прогнозирование на основе экспоненциального тренда.
В соответствии с критерием, необходимом подобрать такие параметры тренда, чтобы минимизировать сумму квадратов отклонений трендовых значений от фактических.
По методу Лапласа, решение этой экстремальной задачи находится из системы уравнений. В данной системе приравнены к нулю все частные производные целевой функции по параметрам тренда.
,
где a,b,c…- параметры тренда.
Прежде чем подставить уравнение экспоненциальной функции (с параметрами a,b) в функцию критерия, прологарифмируем её:
|
|
Тем самым получена линейная зависимость
По методу МНК, будем минимизировать расхождения логарифмов:
Т.о., для определения параметров тренда необходимо сосчитать четыре суммы , и, подставив их вместе с количеством известных наблюдений n в систему уравнений, решить её.
Прогнозирование на основе измерения тренда и колеблемости один из методов статистического прогнозирования.
Статистический прогноз – это вероятностная оценка возможностей развития того или иного объекта (процесса) и величины его признаков в будущем, полученная на основе статистической закономерности, выявленной по данным прошлого периода. Он предназначен либо для планирования управления объекта, либо для выработки стратегии поведения субъекта, если объект не управляем.
Статистический прогноз предполагает не только верное качественное предсказание, но и достаточно точное количественное измерение вероятных возможностей ожидаемых значений признаков. Для данной цели необходимо, чтобы прогностическая модель имела достаточную точность или допустимо малую ошибку прогноза. Ошибка статистического прогноза будет тем меньше, чем меньше срок упреждения – временной промежуток от базы прогноза до прогнозируемого периода, и чем длиннее база прогноза – прошлый период, однородный по закономерностям развития, на основе информации за который построена прогностическая модель. Для определения срока упреждения используют чисто эмпирическое правило: в большинстве случаев срок упреждения не должен превышать третьей части длины базы прогноза.
Ошибка прогноза связана прямой зависимостью с колеблемостью. Поэтому сила колебаний должна учитываться при выборе соотношения между длиной базы прогноза и сроком упреждения. Чем сильнее колеблемость, тем большим должно быть это соотношение.
Область применения метода прогнозирования не основе тренда и колеблемости весьма широка, что вытекает из большого значения изучения трендов и колеблемости в социально-экономических науках, а так же в процессе практического планирования и управления производством. Одним из самых ярких примеров может служить прогнозирование урожайности на основе трендовой модели, а значит и объема продукции растениеводства, так как среди факторов, влияющих на урожайность, значительную роль играют метеорологические явления, которые в настоящее время наука не в состоянии прогнозировать даже на год в перед, а трендовая модель и измерение колеблемости позволяют рассчитывать вероятные границы прогнозируемой урожайности на несколько лет вперед.
Прогнозирование всегда опирается на опыт развития изучаемого явления в прошлом. Поэтому любой прогноз как выход за пределы изучаемого периода можно рассматривать как экстраполяцию.
Прогноз выражается как в виде точечной или интервальной оценке. Точечный прогноз есть оценка прогнозируемого показателя в точке (в конкретном году, месяце, дне, середине периода прогноза) по уравнению, описывающему тенденцию показателя.
Точечная оценка рассчитывается путем подстановки номера года, на который рассчитывается прогноз, в уравнение тренда. Она является средней оценкой для прогнозируемого интервала времени. Так, точечный прогноз указывает ту величину урожайности, на которую в среднем выйдет объект на прогнозируемый год, если тенденция динамики урожайности сохранится. Эту величину можно использовать в планирование.