Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАСПЕЧАТАТЬ ЭКОНОМЕТРИКА.doc
Скачиваний:
4
Добавлен:
01.05.2025
Размер:
858.62 Кб
Скачать

14. Последовательные этапы построения модели множественной регрессии.

Множественная регрессия(МР) широко используется в решении проблем спроса,

доходности акций, издержек производства и других вопросах. Основная цель множественной регрессии -построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также их совокупное воздействие на моделируемый показатель.

Yi=Yteor(x1i;x2i )+ei Yteor(x1i;x2i )=a* +b1x1*+b2*x2i (+...bp*xpi)

S(a* b1* b2*)=n i=1

∑( yi-a- b1x1- b2x2i)2→min a, b1,b2. a a*,b1*,b2*-решение задачи.

Решение задачи следует из необходимого условия минимума функций многих переменных.

Производная в точке минимума должна быть равна 0.

(1)∂s/∂a(a*;b1*;b2*)=2∑(ayi-a*-b1*x1i- b2*x2i)(-1)=0; (x2)=2x; (-x)1=-1; (c)1=0

(2)∂s/∂b1(a*;b1*;b2*)=2∑(yi-a*-b1*x1i-b2*x2i)(-x1i)=0; (cx)1=c

(3)∂s/∂b2(a*;b1*;b2*)=2∑(yi-a*-b1*x1i-b2*x2i)(-x2i)=0; *(-1)

(1);(2);(3)-система нормальных уравнений.

∑Yi= a*(∑1)+ b1*(∑x1i)+ b2*(∑x2 i); (∑1)=n

∑(Yix1i)= a*∑x1i+ b1*∑x1i2+ b2*∑(x2ix1i)

∑(Yix2i)= a*∑x2i+ b1*∑(x1i x2 i)+ b2*∑x2 i2

∑Yi

d=∑(Yix1i)

∑(Yix2i)n; ∑x1i; ∑x2 i;

A=∑x1i; ∑x1i2; ∑x2ix1i;

∑x2i; ∑x1i x2 i; ∑x2 i2;

a*x=b1*b2*d=A*x; A-1; A-1d=x

х и d – векторы, причем х- вектор неизвестных коэффициентов

1 шаг: сформировать матрицу А, сформировать столбец d,

2 шаг:сделать обратную матрицу,

3 шаг: полученную матрицу умножаем умножаем на d, получаем х.

4 шаг: проверяем с помощью сервиса анализ данных регрессия.

Замечание: также как в парной регрессии коэффициент уравнения множественной

регрессии можно вычислять 2-мя способами: 1.через линейную функцию. 2.Сервис→ан

данных→регрессия(более предпочтительный способ) коэффициенты вычисляются

и располагаются более естественно.

Правило получения хорошей модели:

1) Fфакт> Fтабл.

2) вероятность илизначение д.б.<0,05. Yтеор(Xi;X2i)=a*+b*Xi+b2*X2i+b3*X3i – наиболее точная.

Факторы, включенные во множественную регрессию, должны отвечать след треб-ям:

1 должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количесвенного измерения,то ему нужно придать количественную определенность(в модели стоимости объектов

недвижимости учитывается место нахождения недвижимости, и районы могут быть

проранжированы)

2. Факторы не должны быть интеркоррелированы и находиться в точной

функциональной связи. Система нормальных уравнений может оказаться плохо обусловленной и повлечет неустойчивость и ненадежность оценок коэффициентов регрессии если включаются в модель факторы с высокой интеркорреляцией , когда Ryx1<Rx1x2 для зависимостиy=a+b1x1+b2x2+e. Если между факторами

существует высокая корреляция, то нельзя определить их изолированное влияние на

результативный показатель и параметры уравнения регрессии оказываются

неинтерпретируемыми. Так в уравнении y=a+b1x1+b2x2+e. предполагается , что факторы x1, x2 независимы другот друга, т.е. rx1x2=0. Тогда можно

говорить, что параметр b1 измеряет силу влияния фактора x1 на результат у при неизменном значении фактора x2. Если же rx1x2=1, то с изменением фактора x1 фактор x2 не может оставаться неизменным. Отсюда b1 и b2

нельзя интерпретировать как показатели раздельного влияния x1 и x2 и на y,