- •Биологи́ческая система́тика — научная дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое приложение этих принципов к построению системы.
- •Основные цели систематики:
- •История образования атмосферы
- •Значение фотосинтеза
- •Основные типы биополимеров: белки, нуклеотиды, полисахариды, липиды.
- •6. Структурная организация нуклеиновых кислот
- •7. Образование полипептидной цепи из последовательно доставляемых к мРнк тРнк с соответствующими аминокислотами происходит на рибосомах (рис. 3.9).
- •10. Передача генетической информации осуществляется с помощью трех механизмов: репликации, транскрипции, трансляции.
- •11. Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи изаминокислотных остатков, происходящий на рибосомах клеток живых организмов с участиеммолекул мРнк и тРнк.
- •Трансляция
- •Сравнение прокариотической и эукариотической клеток
- •17. Классификация организмов в соответствии с источниками энергии и углерода
- •Вольвокс
- •Чередование гаплоидной и диплоидной фаз в жизненном цикле
10. Передача генетической информации осуществляется с помощью трех механизмов: репликации, транскрипции, трансляции.
Репликация (досл. «удвоение» ДНК) – это многоэтапный, упорядоченный процесс, идущий по матрице ДНК в направлении 5`à3`, в результате которого из каждой молекулы ДНК образуется 2 абсолютно идентичные, «дочерние» ДНК. С репликации ДНК начинается процесс деления клетки. Репликация ДНК начинается на многих участках (репликативных единицах) и идет одновременно по обеим цепям.
Репликация идет полуконсервативным путем: у каждой дочерней ДНК одна из цепей – исходная (материнская), а вторая вновь образованная (дочерняя) (опыты Мезельсона и Сталя). В процессе репликации участвует около 30 белков и ферментов, образующих репликативный комплекс: расплетающие ферменты (хеликаза и ДНК-топоизомеразы), ДНК-полимеразы, ДНК-лигазы, ДНК-зависимые РНК-полимеразы.
В геноме человека репликация происходит в течение 9 часов. Это необходимо для образования тетраплоидного генома из диплоидного в реплицирующейся клетке. Для репликации необходимо наличие множественных мест репликации (репликативных единиц – их около 100).
Вторая роль ДНК заключается в кодировании первичной структуры белков, синтезируемых клеткой. При этом в синтезе специфических белков ДНК принимает косвенное, а не прямое участие. Оно состоит в том, что на ДНК происходит синтез всех РНК, которые уже непосредственно участвуют в процессе образования клеточных белков. Синтез молекул РНК называется транскрипцией.
Транскрипция (досл. «переписывание» информации с ДНК на РНК)
При транскрипции идет синтез молекул РНК всех типов, т.к. на молекуле ДНК имеются участки, кодирующие первичную структуру каждого вида РНК. Участок ДНК, где записана информация о строении РНК, называется транскриптон, или оперон. Транскрипция – это переписывание генетической информации с определенного оперона ДНК. Этот процесс имеет как сходства, так и различия с репликацией.
Трансляция (досл. «перевод» информации, записанной на иРНК в последовательность аминокислот синтезируемых молекул белка)
Это перевод генетической информации, хранящейся в и-РНК в виде определенной последовательности кодонов в линейную последовательность аминокислот п/п цепи белка. Этот процесс можно разделить на 5 стадий:
1) узнавание и активация аминокислоты (происходит в цитоплазме клеток);
2) образование инициирующего комплекса;
3) элонгация, т.е. удлинение п/п цепи;
4) терминация (окончание роста п/п цепи) и отделение ее от рибосомы.
5) Образование нативной структуры белка. (фолдинг)
Фолдинг (факультативный материал) В этом процессе участвуют особые белки – шапероны и 2 фермента – протеин-дисульфид изомераза и пептидил-пролил цис-трансизомераза. Белки-шапероны – кальнексин, кальретикулин и др. проявляют АТФ-азную активность. При связывании с такими белками, АДФ замещается на АТФ. АТФ-шаперон-комплекс позволяет фрагменту белка подвергаться фолдингу. Белки-шапероны участвуют в фолдинге также посредством выполнения защитной функции: Шапероны представляют собой двойные кольцевые молекулы, в центре которых создаются благоприятные условия для фолдинга, т.к. Шапероны защищают молекулы синтезированного белка от температурных перепадов, создавая антишоковую среду.
Генети́ческий код — свойственный всем живым организмам способ кодированияаминокислотной последовательности белков при помощи последовательности нуклеотидов.
Ген (др.-греч. γένος — род) — структурная и функциональная единицанаследственности живых организмов. Ген представляет собой последовательностьДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее,аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомствупри размножении.
генотип - это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе - кариотипе.
Кариотип - диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом.
Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гаплоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.
