
- •1) Кинематическое описание движения. Радиус - вектор. Перемещение. Путь. Скорость и ускорение. Нормальное и касательное ускорение
- •2) Угловая скорость и угловое ускорение. Связь между угловыми и линейными характеристиками
- •3) Основная задача динамики
- •4) Масса, импульс, сила. Силы в механике.
- •5) Законы Ньютона.
- •6) Момент силы и момент импульса тела.
- •8) Законы сохранения импульса и момента импульса - фундаментальные законы природы. Применение этих законов к решению задач механики.
- •9) Энергия, как единая мера различных форм движения материи. Работа. Вычисление работы переменной силы. Мощность. Кинетическая энергия.
- •10) Кинетическая энергия и работа при вращательном движении.
- •11) Консервативные и неконсервативные силы. Потенциальное поле сил. Потенциальная энергия и ее связь с силой, действующей на материальную точку.
- •12) Закон сохранения и изменения механической энергии.
- •17)Статистический и термодинамический методы исследования. Термодинамические системы, параметры, процессы
- •18)Молекулярно-кинетическая теория газов (мкт). Основное уравнение мкт для давления. Температура с точки зрения мкт
- •19)Закон равномерного распределения энергии по степеням свободы молекул. Средняя энергия молекул. Внутренняя энергия идеального газа
- •20) Закон Максвелла для распределения молекул по скоростям и энергиям
- •21)Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •22)Внутренняя энергия системы, работа и теплота
- •23)Первое начало термодинамики и его применение к изопроцессам идеальных газов. Адиабатный процесс
- •24)Обратимые и необратимые процессы. Цикл. Тепловые машины. Цикл Карно и его к. П. Д.
- •26) Второе начало термодинамики.
- •28.Электрический заряд. Закон сохранения электрического заряда. Закон Кулона
- •29. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. I Іапряженность поля точечного заряда.
- •32. С вязь между напряженностью электрического поля и потенциалом.
- •34. Основная задача электростатики. Методы ее решения.
- •36. Диэлектрики. Дипольные моменты молекул диэлектриков. Поляризация диэлектриков. Поляризованность.
- •37. Теорема Гаусса для электрического поля в среде. Электрическое смещение. Вычисление поля в диэлектриках.
- •38. Распределение заряда на проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •39. Емкость удлиненного проводника. Вывод формулы емкости сферы. Конденсаторы.
- •40. Энергия взаимодействия системы электрических зарядов.
- •41. Энергия заряженного проводника и конденсатора.
- •42. Энергия и плотность энергии электрического поля.
- •43.Электрический ток. Сила и плотность тока. Условия существования постоянного тока.
- •44.Законы Ома и Джоуля - Ленца в дифференциальной и интегральной формах.
- •45. Сторонние силы. Э. Д. С. Обобщенный закон Ома.
- •46.Работа и мощность тока.
- •47. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции.
- •48. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •49. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •50. Сила лоренца и сила Ампера. Взаимодействие токов. Движение заряженных частиц в магнитном и электрическом полях.
- •51.Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент.
- •52.Работа перемещения проводника и контура с током в магнитном поле.
- •53.Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность в магнитном поле.
- •54.Явление электромагнитной индукции. Закон Фарадея- Максвелла. Правило Ленца.
- •55.Самоиндукция.Индуктивность. Индуктивность длинного соленоида.
- •56.Токи при замыкании и размыкании цепи (экстратоки).
- •57. Энергия и плотность энергии магнитного поля.
- •58. Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла.
- •60.Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и спомощью векторных диаграмм.
- •61.Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур.
- •62.Волновые процессы. Продольные и поперечные волны. Уравнение волны.
- •63.Фазовая скорость, длина волны, волновое число.
- •64.Волновое уравнение. Энергия волны, поток энергии, вектор Умова.
- •65.Принцип суперпозиции волн. Групповая скорость и её связь с фазовой
- •68. Излучение диполя.
- •69. Тепловое равновесное излучение и его характеристики. Закон Кирхгофа.
- •70. Абсолютно черное тело. Законы излучения абсол.Тно черного тела.
- •71. Гипотеза Планка о квантовом характере излучения. Формула Планка.
- •72) Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •73) Эффект Комптона, его теория явления.
- •74) Фотоны. Энергия, масса, импульс фотона
- •75) Связь волновых и корпускулярных свойств излучения(Корпускуля́рно-волново́й дуали́зм).
- •76) Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза Де Бройля
- •77. Соотношение неопределенностей Гейзенберга
- •78. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •79. Понятие об уравнении Шредингера как основа уравнение нерелятивистской квантовой механики. Принцип соответствия Бора.
- •80.Решение уравнения Шредингера для атома водорода.
72) Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
Выбивание светом электронов с поверхности токопроводящих материалов — явление, широко используемое сегодня в повседневной жизни. Например, некоторые системы сигнализации работают за счет передачи видимых или инфракрасных световых лучей на фотоэлектрический элемент, из которого выбиваются электроны, обеспечивающие электропроводность цепи, в которую он включен. Если на пути светового луча появляется препятствие, свет на датчик поступать перестает, поток электронов прекращается, цепь разрывается — и срабатывает электронная сигнализация.
Это явление, получившее название фотоэлектрического эффекта, или, кратко, фотоэффекта, было открыто в конце XIX столетия и сразу поставило целый ряд фундаментальных вопросов, поскольку ничего из того, что было известно ученым о строении металлов или природе света, фотоэффекта не объясняло. Нельзя сказать, что классическая теория запрещала бы свету выбивать электроны из металла. Электромагнитные волны, по идее, могли «вымывать» электроны из металла подобно тому, как морские волны выносят на поверхность и постепенно прибивают к берегу легкие пробковые крошки. Однако проблема состояла в том, что столь простым объяснением в случае фотоэффекта ограничиться было невозможно. Во-первых, электроны появлялись практически мгновенно после начала облучения. Во-вторых, фотоэффект, как оказалось, возникал даже под воздействием самых слабых световых лучей, причем по мере повышения интенсивности облучения энергия высвобождаемых электронов не изменялась. И то, и другое вступало в явное противоречие с классической картиной взаимодействия света с электронами.
Проблему в конце концов удалось решить в начале ХХ века Альберту Эйнштейну, причем сделанные им выводы дали мощный толчок развитию квантовой механики. Незадолго до этого Макс Планк показал, чтоизлучение черного тела можно адекватно описать, приняв за допущение, что атомы излучают и поглощают свет фиксированными энергетическими порциями — квантами. Он полагал, что этот феномен каким-то образом обусловлен внутренним строением атомов, но отнюдь не природой света. Однако Эйнштейн воспринял идею Планка гораздо серьезнее и постулировал, что сам свет распространяется дискретными пучками энергии, которые он назвал фотонами. Иногда фотоны ведут себя подобно частицам, иногда — подобно волнам (см. Принцип дополнительности). В частности, при взаимодействии с электроном фотон может вести себя как частица, и буквально выбивать электрон из атома (это соударение фотона с атомом можно уподобить столкновению двух бильярдных шаров). Причем для выбивания электрона при таком соударении достаточно единственного фотона. Далее, повышение интенсивности света приводит к увеличению числа фотонов (и, следовательно, числа выбитых электронов), но не энергии отдельно взятого фотона. Следовательно, и энергия, и скорость отдельно взятого выбитого фотоэлектрона не зависят от интенсивности света — но только от его частоты.
Рассуждая таким образом, Эйнштейн вывел следующее простое уравнение для описание энергии фотоэлектронов:
E = hν — φ
где ν — частота падающего света, h — постоянная Планка, а φ — так называемая «работа выхода», то есть минимальная энергия, необходимая для того, чтобы выбить электрон из атома металла.
Законы внешнего фотоэффекта. Квантовая теория фотоэффекта.
Внешний фотоэффект - испускание электрона веществом под действием электромагнитного изменения.
Первый закон (закон Столетова): При фиксированной частоте падающего света, число фотоэлектронов вырываемых из катода за единицу времени пропорционально интенсивности света.
Второй закон: Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектрона не зависит от интенсивности падающего света, а а определяется только его частотой.
Третий закон: Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света ниже которой фотоэффект не возможен.
Квантовая гипотеза Планка: h*ню = ε
Формула Энштейна: h*ню = Авых + (m*v2)/2
Авых - работы выхода
Чем больше ню, тем больше кинетическая энергия.