
- •1) Кинематическое описание движения. Радиус - вектор. Перемещение. Путь. Скорость и ускорение. Нормальное и касательное ускорение
- •2) Угловая скорость и угловое ускорение. Связь между угловыми и линейными характеристиками
- •3) Основная задача динамики
- •4) Масса, импульс, сила. Силы в механике.
- •5) Законы Ньютона.
- •6) Момент силы и момент импульса тела.
- •8) Законы сохранения импульса и момента импульса - фундаментальные законы природы. Применение этих законов к решению задач механики.
- •9) Энергия, как единая мера различных форм движения материи. Работа. Вычисление работы переменной силы. Мощность. Кинетическая энергия.
- •10) Кинетическая энергия и работа при вращательном движении.
- •11) Консервативные и неконсервативные силы. Потенциальное поле сил. Потенциальная энергия и ее связь с силой, действующей на материальную точку.
- •12) Закон сохранения и изменения механической энергии.
- •17)Статистический и термодинамический методы исследования. Термодинамические системы, параметры, процессы
- •18)Молекулярно-кинетическая теория газов (мкт). Основное уравнение мкт для давления. Температура с точки зрения мкт
- •19)Закон равномерного распределения энергии по степеням свободы молекул. Средняя энергия молекул. Внутренняя энергия идеального газа
- •20) Закон Максвелла для распределения молекул по скоростям и энергиям
- •21)Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •22)Внутренняя энергия системы, работа и теплота
- •23)Первое начало термодинамики и его применение к изопроцессам идеальных газов. Адиабатный процесс
- •24)Обратимые и необратимые процессы. Цикл. Тепловые машины. Цикл Карно и его к. П. Д.
- •26) Второе начало термодинамики.
- •28.Электрический заряд. Закон сохранения электрического заряда. Закон Кулона
- •29. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. I Іапряженность поля точечного заряда.
- •32. С вязь между напряженностью электрического поля и потенциалом.
- •34. Основная задача электростатики. Методы ее решения.
- •36. Диэлектрики. Дипольные моменты молекул диэлектриков. Поляризация диэлектриков. Поляризованность.
- •37. Теорема Гаусса для электрического поля в среде. Электрическое смещение. Вычисление поля в диэлектриках.
- •38. Распределение заряда на проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •39. Емкость удлиненного проводника. Вывод формулы емкости сферы. Конденсаторы.
- •40. Энергия взаимодействия системы электрических зарядов.
- •41. Энергия заряженного проводника и конденсатора.
- •42. Энергия и плотность энергии электрического поля.
- •43.Электрический ток. Сила и плотность тока. Условия существования постоянного тока.
- •44.Законы Ома и Джоуля - Ленца в дифференциальной и интегральной формах.
- •45. Сторонние силы. Э. Д. С. Обобщенный закон Ома.
- •46.Работа и мощность тока.
- •47. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции.
- •48. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •49. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •50. Сила лоренца и сила Ампера. Взаимодействие токов. Движение заряженных частиц в магнитном и электрическом полях.
- •51.Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент.
- •52.Работа перемещения проводника и контура с током в магнитном поле.
- •53.Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность в магнитном поле.
- •54.Явление электромагнитной индукции. Закон Фарадея- Максвелла. Правило Ленца.
- •55.Самоиндукция.Индуктивность. Индуктивность длинного соленоида.
- •56.Токи при замыкании и размыкании цепи (экстратоки).
- •57. Энергия и плотность энергии магнитного поля.
- •58. Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла.
- •60.Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и спомощью векторных диаграмм.
- •61.Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур.
- •62.Волновые процессы. Продольные и поперечные волны. Уравнение волны.
- •63.Фазовая скорость, длина волны, волновое число.
- •64.Волновое уравнение. Энергия волны, поток энергии, вектор Умова.
- •65.Принцип суперпозиции волн. Групповая скорость и её связь с фазовой
- •68. Излучение диполя.
- •69. Тепловое равновесное излучение и его характеристики. Закон Кирхгофа.
- •70. Абсолютно черное тело. Законы излучения абсол.Тно черного тела.
- •71. Гипотеза Планка о квантовом характере излучения. Формула Планка.
- •72) Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •73) Эффект Комптона, его теория явления.
- •74) Фотоны. Энергия, масса, импульс фотона
- •75) Связь волновых и корпускулярных свойств излучения(Корпускуля́рно-волново́й дуали́зм).
- •76) Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза Де Бройля
- •77. Соотношение неопределенностей Гейзенберга
- •78. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •79. Понятие об уравнении Шредингера как основа уравнение нерелятивистской квантовой механики. Принцип соответствия Бора.
- •80.Решение уравнения Шредингера для атома водорода.
64.Волновое уравнение. Энергия волны, поток энергии, вектор Умова.
Волной называется процесс распространения колебания (или какого-то другого сигнала) в пространстве.
Уравнение
волны Е = Е0×cos(wt – kx +
j) представляет собой решение дифференциального
волнового уравнения. Для отыскания
этого дифференциального уравнения,
продифференцируем уравнение волны
(13.2) дважды по времени, а затем — дважды
по координате:
,
волновое
число k =
,
Энергия
волны При распространении волны в
пространстве от какого-либо источника
происходит и распространение энергии;
частицы среды, вовлекаемые в колебательное
движение, получают энергию от волны.
Проследим, как энергия от источника
распространяется в пространстве.
Объёмная
плотность кинетической энергии Wk запишется
(r - плотность среды):
Объёмная плотность потенциальной
энергии упруго деформируемой среды
равна:
n - фазовая скорость волны, e -
относительная деформация среды.
Учитывая, что:
имеем:
ПОТОК
ЭНЕРГИИ ЧЕРЕЗ ПЛОЩАДКУ dS -
энергия, прошедшая через эту площадку
в единицу времени.Если скорость переноса
энергии n, то поток энергии dФ через
площадку dS запишется:
Пото́к эне́ргии — это количество энергии, переносимое через некоторую произвольную площадку в единицу времени. Если речь идёт об энергии, переносимой оптическим излучением, то вместо термина «поток энергии» используют эквивалентный для такого случая термин «поток излучения» Единицей измерения потока энергии в Международной системе единиц (СИ) является ватт, равный одному джоулю, делённому на секунду. Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:
(в
системе СГС),
(в
системе СИ), где E и H —
векторы напряжённости электрического и магнитного полей
соответственно. В случае квазимонохроматических
электромагнитных полей, справедливы
следующие формулы для усреднённой по
периоду комплексной плотности потока
энергии[1]:
(в
системе СГС),
(в
системе СИ),
где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственно. В этом случае чёткий физический смысл имеет только действительная часть комплексного вектора S — это вектор усреднённой за период плотности потока энергии. Физический смысл мнимой части зависит от конкретной задачи.
Модуль вектора Пойнтинга равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.
Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то нормальная составляющая вектора S непрерывна на границе двух сред.
[править]Вектор Пойнтинга и импульс электромагнитного поля В силу симметричности тензора энергии-импульса, все три компоненты вектора пространственной плотности импульса электромагнитного поля равны соответствующим компонентам вектора Пойнтинга, делённым на квадратскорости света:
(в
системе СИ) В этом соотношении проявляется
материальность электромагнитного
поля.
Поэтому, чтобы узнать импульс
электромагнитного поля в той или иной
области пространства, достаточно
проинтегрировать вектор Пойнтинга по
объёму.