
- •1) Кинематическое описание движения. Радиус - вектор. Перемещение. Путь. Скорость и ускорение. Нормальное и касательное ускорение
- •2) Угловая скорость и угловое ускорение. Связь между угловыми и линейными характеристиками
- •3) Основная задача динамики
- •4) Масса, импульс, сила. Силы в механике.
- •5) Законы Ньютона.
- •6) Момент силы и момент импульса тела.
- •8) Законы сохранения импульса и момента импульса - фундаментальные законы природы. Применение этих законов к решению задач механики.
- •9) Энергия, как единая мера различных форм движения материи. Работа. Вычисление работы переменной силы. Мощность. Кинетическая энергия.
- •10) Кинетическая энергия и работа при вращательном движении.
- •11) Консервативные и неконсервативные силы. Потенциальное поле сил. Потенциальная энергия и ее связь с силой, действующей на материальную точку.
- •12) Закон сохранения и изменения механической энергии.
- •17)Статистический и термодинамический методы исследования. Термодинамические системы, параметры, процессы
- •18)Молекулярно-кинетическая теория газов (мкт). Основное уравнение мкт для давления. Температура с точки зрения мкт
- •19)Закон равномерного распределения энергии по степеням свободы молекул. Средняя энергия молекул. Внутренняя энергия идеального газа
- •20) Закон Максвелла для распределения молекул по скоростям и энергиям
- •21)Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •22)Внутренняя энергия системы, работа и теплота
- •23)Первое начало термодинамики и его применение к изопроцессам идеальных газов. Адиабатный процесс
- •24)Обратимые и необратимые процессы. Цикл. Тепловые машины. Цикл Карно и его к. П. Д.
- •26) Второе начало термодинамики.
- •28.Электрический заряд. Закон сохранения электрического заряда. Закон Кулона
- •29. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. I Іапряженность поля точечного заряда.
- •32. С вязь между напряженностью электрического поля и потенциалом.
- •34. Основная задача электростатики. Методы ее решения.
- •36. Диэлектрики. Дипольные моменты молекул диэлектриков. Поляризация диэлектриков. Поляризованность.
- •37. Теорема Гаусса для электрического поля в среде. Электрическое смещение. Вычисление поля в диэлектриках.
- •38. Распределение заряда на проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •39. Емкость удлиненного проводника. Вывод формулы емкости сферы. Конденсаторы.
- •40. Энергия взаимодействия системы электрических зарядов.
- •41. Энергия заряженного проводника и конденсатора.
- •42. Энергия и плотность энергии электрического поля.
- •43.Электрический ток. Сила и плотность тока. Условия существования постоянного тока.
- •44.Законы Ома и Джоуля - Ленца в дифференциальной и интегральной формах.
- •45. Сторонние силы. Э. Д. С. Обобщенный закон Ома.
- •46.Работа и мощность тока.
- •47. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции.
- •48. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •49. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •50. Сила лоренца и сила Ампера. Взаимодействие токов. Движение заряженных частиц в магнитном и электрическом полях.
- •51.Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент.
- •52.Работа перемещения проводника и контура с током в магнитном поле.
- •53.Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность в магнитном поле.
- •54.Явление электромагнитной индукции. Закон Фарадея- Максвелла. Правило Ленца.
- •55.Самоиндукция.Индуктивность. Индуктивность длинного соленоида.
- •56.Токи при замыкании и размыкании цепи (экстратоки).
- •57. Энергия и плотность энергии магнитного поля.
- •58. Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла.
- •60.Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и спомощью векторных диаграмм.
- •61.Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур.
- •62.Волновые процессы. Продольные и поперечные волны. Уравнение волны.
- •63.Фазовая скорость, длина волны, волновое число.
- •64.Волновое уравнение. Энергия волны, поток энергии, вектор Умова.
- •65.Принцип суперпозиции волн. Групповая скорость и её связь с фазовой
- •68. Излучение диполя.
- •69. Тепловое равновесное излучение и его характеристики. Закон Кирхгофа.
- •70. Абсолютно черное тело. Законы излучения абсол.Тно черного тела.
- •71. Гипотеза Планка о квантовом характере излучения. Формула Планка.
- •72) Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •73) Эффект Комптона, его теория явления.
- •74) Фотоны. Энергия, масса, импульс фотона
- •75) Связь волновых и корпускулярных свойств излучения(Корпускуля́рно-волново́й дуали́зм).
- •76) Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза Де Бройля
- •77. Соотношение неопределенностей Гейзенберга
- •78. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •79. Понятие об уравнении Шредингера как основа уравнение нерелятивистской квантовой механики. Принцип соответствия Бора.
- •80.Решение уравнения Шредингера для атома водорода.
51.Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент.
Магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее опр образом. За направление м.п. в данной точке принимается направление, вдоль к-ого располагается положительная нормаль к рамке (рис.1)
рис.1
На магнитную стрелку действует пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля. Т.к. рамка с током испытывает ориентирующее действие поля, то на нее в м.п. действует пара сил. Вращающий момент сил зависит как от св-в поля в данной точке, так и от св-в рамки и опр формулой: M = [pmB], где pm- вектор магнитного момента рамки с током, В – вектор магнитной индукции, количественная характеристика магнитного поля.
52.Работа перемещения проводника и контура с током в магнитном поле.
Работа
по перемещению проводника с током в
магнитном поле равна произведению силы
тока на магнитный поток, пересеченным
движущимся проводником:
dA
= Fdx
= IBldx
= IBdS
= IdФ.
Полученная
формула справедлива и для произвольного
направления вектора В.
Работа
по перемещению замкнутого контура с
током в магнитном поле равна произведению
силы тока в контуре на изменение
магнитного потока, сцепленного с
контуром. A
= I
.
Формула
остается справедливой для контура
любой формы в произвольном магнитном
поле.
53.Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность в магнитном поле.
Магнитное
поле в веществе складывается из двух
полей: внешнего поля, создаваемого
током, и поля, создаваемого намагниченным
веществом. Тогда, вектор магинтной
индукции результирующего магн поля в
магнетике равен векторной сумме
магнитных индукции внешнего поля В0
(поля, создаваемого намагничивающим
током в вакууме) и поля микротоков
B’(поля,
создаваемого молекулярными токами): В
= В0 + В’,
где В0
=
.
В несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничение, т.е. J = χH, где χ – безразмерная величина, называемая магнитной восприимчивостью вещества. Для диамагнетиков χ<0 и μ<0, для парамагнетиков χ>0 и μ>1.
Ферромагнетики – вещ-ва, обладающие спонтанной намагниченностью, т.е. они намагничены даже при отсутствии внешнего магнитного поля. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков. Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. Магнитная проницаемость μ ферромагнетиков не является постоянной величиной; она сильно зависит от индукции B0 внешнего поля. . Характерной особенностью процесса намагничивания ферромагнетиков является так называетмый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса Если теперь уменьшать магнитную индукцию B0 внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно Br. Остаточная намагниченность образцов позволяет создавать постоянные магниты.
Закон
полного тока для магнитного поля и
веществе (теорема о циркуляции вектора
В): циркуляция вектора Н по произвольному
замкнутому контуру L
равна
алгебраической сумме токов проводимости,
охватываемых этим контуром:
.