Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovye_shpory.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.14 Mб
Скачать

50. Сила лоренца и сила Ампера. Взаимодействие токов. Движение заряженных частиц в магнитном и электрическом полях.

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B

F = IBΔl sin α

может быть выражена через силы, действующие на отдельные носители заряда.

Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение n q υ S, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику: 

I = q n υ S.

Выражение для силы Ампера можно записать в виде: 

F = q n S Δl υB sin α.

Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна 

FЛ = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью   и вектором магнитной индукции   Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика

Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними: 

В Международной системе единиц СИ коэффициент пропорциональности k принято записывать в виде: 

k = μ0 / 2π,

где μ0 – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно 

μ0 = 4π·10–7 H/A2 ≈ 1,26·10–6 H/A2.

Формула, выражающая закон магнитного взаимодействия параллельных токов, принимает вид: 

Отсюда нетрудно получить выражение для индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы   и   магнитной индукции параллельных токов I1 и I2 лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить sin α = 1. Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением 

Описание движения заряженной частицы проводится на основании второго закона Ньютона, уравнение которого имеет вид

где qE − сила, действующая на частицу с электрическим зарядом q со стороны электрического поля; qv x B − сила Лоренца, действующая на частицу со стороны магнитного поля. В общем случае напряженность электрического поля E и индукция магнитного поля B могут зависеть от координат (в неоднородных полях) и времени (в нестационарных полях). Для однозначного решения уравнения (1) его необходимо дополнить начальными условиями: положением частицы ro и скоростью vo в некоторый момент времени to.  При описании распространения потоков частиц в некоторых случаях необходимо также учитывать взаимодействия частиц между собой, или принимать во внимание зависимость характеристик полей от положения и скоростей других частиц. Наконец, при записи уравнения (1) принято, что частицы движутся в вакууме, где отсутствуют силы сопротивления среды. Движение частиц в средах, обладающих сопротивлением, описываются в рамках уравнений для электрического тока. При движении частиц в электромагнитном поле, как правило, пренебрегают действием силы тяжести, которая обычно значительно меньше электромагнитных сил.  Записанное уравнение движения справедливо для частиц, движущихся со скоростями, значительно меньшими скорости света. В противном случае необходимо использовать релятивистские уравнения движения теории относительности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]