
- •1) Кинематическое описание движения. Радиус - вектор. Перемещение. Путь. Скорость и ускорение. Нормальное и касательное ускорение
- •2) Угловая скорость и угловое ускорение. Связь между угловыми и линейными характеристиками
- •3) Основная задача динамики
- •4) Масса, импульс, сила. Силы в механике.
- •5) Законы Ньютона.
- •6) Момент силы и момент импульса тела.
- •8) Законы сохранения импульса и момента импульса - фундаментальные законы природы. Применение этих законов к решению задач механики.
- •9) Энергия, как единая мера различных форм движения материи. Работа. Вычисление работы переменной силы. Мощность. Кинетическая энергия.
- •10) Кинетическая энергия и работа при вращательном движении.
- •11) Консервативные и неконсервативные силы. Потенциальное поле сил. Потенциальная энергия и ее связь с силой, действующей на материальную точку.
- •12) Закон сохранения и изменения механической энергии.
- •17)Статистический и термодинамический методы исследования. Термодинамические системы, параметры, процессы
- •18)Молекулярно-кинетическая теория газов (мкт). Основное уравнение мкт для давления. Температура с точки зрения мкт
- •19)Закон равномерного распределения энергии по степеням свободы молекул. Средняя энергия молекул. Внутренняя энергия идеального газа
- •20) Закон Максвелла для распределения молекул по скоростям и энергиям
- •21)Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •22)Внутренняя энергия системы, работа и теплота
- •23)Первое начало термодинамики и его применение к изопроцессам идеальных газов. Адиабатный процесс
- •24)Обратимые и необратимые процессы. Цикл. Тепловые машины. Цикл Карно и его к. П. Д.
- •26) Второе начало термодинамики.
- •28.Электрический заряд. Закон сохранения электрического заряда. Закон Кулона
- •29. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. I Іапряженность поля точечного заряда.
- •32. С вязь между напряженностью электрического поля и потенциалом.
- •34. Основная задача электростатики. Методы ее решения.
- •36. Диэлектрики. Дипольные моменты молекул диэлектриков. Поляризация диэлектриков. Поляризованность.
- •37. Теорема Гаусса для электрического поля в среде. Электрическое смещение. Вычисление поля в диэлектриках.
- •38. Распределение заряда на проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •39. Емкость удлиненного проводника. Вывод формулы емкости сферы. Конденсаторы.
- •40. Энергия взаимодействия системы электрических зарядов.
- •41. Энергия заряженного проводника и конденсатора.
- •42. Энергия и плотность энергии электрического поля.
- •43.Электрический ток. Сила и плотность тока. Условия существования постоянного тока.
- •44.Законы Ома и Джоуля - Ленца в дифференциальной и интегральной формах.
- •45. Сторонние силы. Э. Д. С. Обобщенный закон Ома.
- •46.Работа и мощность тока.
- •47. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции.
- •48. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •49. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •50. Сила лоренца и сила Ампера. Взаимодействие токов. Движение заряженных частиц в магнитном и электрическом полях.
- •51.Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент.
- •52.Работа перемещения проводника и контура с током в магнитном поле.
- •53.Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность в магнитном поле.
- •54.Явление электромагнитной индукции. Закон Фарадея- Максвелла. Правило Ленца.
- •55.Самоиндукция.Индуктивность. Индуктивность длинного соленоида.
- •56.Токи при замыкании и размыкании цепи (экстратоки).
- •57. Энергия и плотность энергии магнитного поля.
- •58. Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла.
- •60.Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и спомощью векторных диаграмм.
- •61.Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур.
- •62.Волновые процессы. Продольные и поперечные волны. Уравнение волны.
- •63.Фазовая скорость, длина волны, волновое число.
- •64.Волновое уравнение. Энергия волны, поток энергии, вектор Умова.
- •65.Принцип суперпозиции волн. Групповая скорость и её связь с фазовой
- •68. Излучение диполя.
- •69. Тепловое равновесное излучение и его характеристики. Закон Кирхгофа.
- •70. Абсолютно черное тело. Законы излучения абсол.Тно черного тела.
- •71. Гипотеза Планка о квантовом характере излучения. Формула Планка.
- •72) Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •73) Эффект Комптона, его теория явления.
- •74) Фотоны. Энергия, масса, импульс фотона
- •75) Связь волновых и корпускулярных свойств излучения(Корпускуля́рно-волново́й дуали́зм).
- •76) Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза Де Бройля
- •77. Соотношение неопределенностей Гейзенберга
- •78. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •79. Понятие об уравнении Шредингера как основа уравнение нерелятивистской квантовой механики. Принцип соответствия Бора.
- •80.Решение уравнения Шредингера для атома водорода.
43.Электрический ток. Сила и плотность тока. Условия существования постоянного тока.
Электри́ческий ток — направленное движение заряженных частиц под воздействием электрического поля[1]. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
Различают переменный постоянный и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.
Постоянный ток — ток, направление и величина которого слабо меняются во времени.
Переменный ток — ток, величина и (или) направление которого меняются во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется. Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.
2. Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.
Сила тока в Международной системе единиц (СИ) измеряется в амперах.
По закону
Ома сила тока
на
участке цепи прямо пропорциональна напряжению
,
приложенному к этому участку цепи, и
обратно пропорциональна его сопротивлению
:
Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.
Согласно
закону Ома плотность тока в
среде
пропорциональна
напряжённости электрического
поля
и проводимости среды
:
3.
44.Законы Ома и Джоуля - Ленца в дифференциальной и интегральной формах.
Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.
Закон Ома для полной цепи:
,
(2)
где:
— ЭДС источника
напряжения(В),
— сила тока в цепи (А),
— сопротивление всех внешних элементов цепи (Ом),
— внутреннее
сопротивление источника
напряжения (Ом).
Для участка цепи:
Закон Ома для неоднородного участка цепи в интегральной форме:
Закон Ома в дифференциальной форме.
Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.
Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:
где:
—
вектор плотности
тока,
— удельная
проводимость,
—
вектор напряжённости
электрического поля.
Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).
Закон Джоуля Ленца — Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка
Закон Джоуля Ленца в интегральной форме в тонких проводах:
закона Джоуля-Ленца в дифференциальной форме.