- •Автоматические устройства энергосистем (рЗиА)
- •Элементы автоматических устройств (история развития элементов)
- •Входные и выходные сигналы релейной защиты и автоматики (рза) энергосистем
- •Структура устройств рза (измерительная схема, схема сравнения, измерительный орган, логическая часть)
- •Классификация элементов рза
- •Обратные связи элементов рза (положительные и отрицательные связи)
- •Классификация измерительных органов
- •Два принципа действия измерительных органов
- •10.Зона и принципы действия измерительных органов с двумя величинами
- •11.Зона действия измерительного органа при сравнении 2-х величин по абсолютному значению
- •12.Линейные преобразователи входных величин (резисторы и конденсаторы)
- •14.Трансформаторы тока и их погрешности
- •Векторная диаграмма трансформатора тока
- •16. Магнитные трансформаторы тока
- •1 7.Схемы соединения трансформаторов тока Соединение трансформаторов тока и обмоток реле в полную звезду
- •Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •18.Требования к точности трансформатора тока
- •19.Выбор трансформаторов тока и допустимой нагрузки
- •20.Измерительные трансформаторы напряжения и схемы их соединения
- •21.Реакторы и трансреакторы
- •22. Магнитные усилители
- •23.Насыщающиеся трансформаторы тока
- •24.Фазоповоротные и частотно-зависимые схемы
- •25.Фильтры симметричных составляющих
- •26.Фильтр тока обратной последовательности
- •27.Фильтр тока нулевой последовательности
- •28.Фильтр напряжения обратной последовательности
- •29.Дискретные преобразователи входных величин (общие принципы конструктивного исполнения)
- •30.Электромеханические реле
- •31.Устройство и принцип действия электромагнитных реле
16. Магнитные трансформаторы тока
Предназначены для дистанционного преобразования переменного тока. Основным элементом МТТ является его обмотка с разомкнутым магнитопроводом или без него, которая устанавливается в магнитном поле контролируемого тока на допустимом расстоянии от высоковольтного провода и имеет потенциал земли. При этом выходной сигнал МТТ (индуцированная в обмотке ЭДС) является функцией магнитного поля. Уровень этого сигнала зависит от расстояния между обмоткой МТТ и проводом и от их взаимной ориентации. При допустимых расстояниях уровень сигнала оказывается весьма малым. Если МТТ используется для контроля тока в проводе одной из фаз трехфазной электроустановки, то магнитные поля, создаваемые токами других фаз, могут создавать помехи. Имеются конструкции МТТ (типа ТВМ), практически свободные от этих недостатков. В системах электроснабжения магнитные трансформаторы тока нашли применение в устройствах токовых защит подстанций без выключателей со стороны высшего напряжения.
1 7.Схемы соединения трансформаторов тока Соединение трансформаторов тока и обмоток реле в полную звезду
Соединение трансформаторов тока и обмоток реле в неполную звезду
Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
18.Требования к точности трансформатора тока
Трансформаторы тока, питающие РЗ, должны работать с определенной точностью в пределах значений токов КЗ, на которые РЗ должна реагировать. Эти токи, как правило, превышают номинальные токи ТТ I1 ном, и, следовательно, точная работа ТТ должна обеспечиваться при первичных токах I1 > I1 ном.
На основании опыта эксплуатации и теоретического анализа принято, что для обеспечения правильной работы большинства устройств РЗ погрешность в значении вторичного тока ТТ не должна превышать 10%, а по углу δ 7° [25].
Эти требования обеспечиваются, если полная погрешность ТТ ε ≤ 10%, или, иначе говоря, если ток намагничивания не превосходит 10% тока I1. Исходными величинами для оценки погрешности являются наибольший расчетный ток I1 расч max, при котором для рассматриваемой защиты требуется точная работа ТТ, и сопротивление нагрузки Zн. Нагрузка состоит из сопротивлений реле ZP = RP + jXP, соединительных проводов Rп и переходных контактов Rп.к, которые для упрощения суммируются арифметически: Zн = ZP + Rп + Rп.к.
19.Выбор трансформаторов тока и допустимой нагрузки
С учетом тока нагрузки защищаемого элемента, его рабочего напряжения и вида РЗ выбирают тип ТТ и его номинальный коэффициент трансформации, после чего проводят проверку на термическую и динамическую стойкость. Выбранные таким образом ТТ проверяют на точность и надежность работы питающейся от них РЗ, исходя из следующих требований ПУЭ:
1) обеспечения точности работы измерительных органов РЗ при КЗ в расчетных точках электрической сети, выбираемых в зависимости от типа РЗ, при этом полная погрешность ТТ ε не должна превышать 10%;
2) предотвращения отказа срабатывания РЗ при наибольших значениях тока КЗ в начале участка, защищаемого РЗ, вследствие чрезмерного увеличения погрешности ТТ и искажения формы кривой вторичного тока, могущей вызвать вибрацию контактов у электромеханических реле, снижение чувствительности и быстродействия у полупроводниковых реле под влиянием высших гармоник;
3) ограничения напряжения во вторичных цепях ТТ и РЗ до допустимых значений при Iк max.
Для выполнения первого требования, как правило, выбирается ТТ класса Р с коэффициентом трансформации, обеспечивающим необходимую кратность тока при КЗ в требуемой для рассматриваемой РЗ точке сети. Для выбора допустимой нагрузки при заданной кратности Красч = Iк.paсч/I1 TT и полной погрешности ТТ ε ≤ 10% используются кривые предельной кратности, построенные по заводским данным, или характеристики намагничивания, снятые при разомкнутой первичной обмотке – вольт-амперные характеристики U2 =f(Iнам).
